Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnel5 | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
Ref | Expression |
---|---|
lspsnel5.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnel5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsnel5 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | lspsnel5.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspsnel5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspsnel5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lspsnel5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lspsnel5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lspsnel6 20256 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
8 | 1, 7 | mpbirand 704 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 ‘cfv 6433 Basecbs 16912 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 df-lsp 20234 |
This theorem is referenced by: lspsnel5a 20258 lspprid1 20259 lspsnss2 20267 lsmelpr 20353 lspsncmp 20378 lspsnne1 20379 lspsnne2 20380 lspsneq 20384 lspindpi 20394 islbs2 20416 lindsadd 35770 lindsenlbs 35772 lsatelbN 37020 lsmsat 37022 lsatfixedN 37023 l1cvpat 37068 dia2dimlem5 39082 dochsncom 39396 dihjat1lem 39442 dvh4dimlem 39457 lclkrlem2a 39521 lcfrlem6 39561 lcfrlem20 39576 lcfrlem26 39582 lcfrlem36 39592 mapdval2N 39644 mapdrvallem2 39659 mapdindp 39685 mapdh6aN 39749 lspindp5 39784 mapdh8ab 39791 mapdh8e 39798 hdmap1l6a 39823 hdmaprnlem3eN 39872 hdmapoc 39945 |
Copyright terms: Public domain | W3C validator |