![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel5 | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
Ref | Expression |
---|---|
lspsnel5.v | β’ π = (Baseβπ) |
lspsnel5.s | β’ π = (LSubSpβπ) |
lspsnel5.n | β’ π = (LSpanβπ) |
lspsnel5.w | β’ (π β π β LMod) |
lspsnel5.a | β’ (π β π β π) |
lspsnel5.x | β’ (π β π β π) |
Ref | Expression |
---|---|
lspsnel5 | β’ (π β (π β π β (πβ{π}) β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5.x | . 2 β’ (π β π β π) | |
2 | lspsnel5.v | . . 3 β’ π = (Baseβπ) | |
3 | lspsnel5.s | . . 3 β’ π = (LSubSpβπ) | |
4 | lspsnel5.n | . . 3 β’ π = (LSpanβπ) | |
5 | lspsnel5.w | . . 3 β’ (π β π β LMod) | |
6 | lspsnel5.a | . . 3 β’ (π β π β π) | |
7 | 2, 3, 4, 5, 6 | lspsnel6 20749 | . 2 β’ (π β (π β π β (π β π β§ (πβ{π}) β π))) |
8 | 1, 7 | mpbirand 705 | 1 β’ (π β (π β π β (πβ{π}) β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 β wss 3948 {csn 4628 βcfv 6543 Basecbs 17148 LModclmod 20614 LSubSpclss 20686 LSpanclspn 20726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-lmod 20616 df-lss 20687 df-lsp 20727 |
This theorem is referenced by: lspsnel5a 20751 lspprid1 20752 lspsnss2 20760 lsmelpr 20846 lspsncmp 20874 lspsnne1 20875 lspsnne2 20876 lspsneq 20880 lspindpi 20890 islbs2 20912 lindsadd 36784 lindsenlbs 36786 lsatelbN 38179 lsmsat 38181 lsatfixedN 38182 l1cvpat 38227 dia2dimlem5 40242 dochsncom 40556 dihjat1lem 40602 dvh4dimlem 40617 lclkrlem2a 40681 lcfrlem6 40721 lcfrlem20 40736 lcfrlem26 40742 lcfrlem36 40752 mapdval2N 40804 mapdrvallem2 40819 mapdindp 40845 mapdh6aN 40909 lspindp5 40944 mapdh8ab 40951 mapdh8e 40958 hdmap1l6a 40983 hdmaprnlem3eN 41032 hdmapoc 41105 |
Copyright terms: Public domain | W3C validator |