![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel5 | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
Ref | Expression |
---|---|
lspsnel5.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnel5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsnel5 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | lspsnel5.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspsnel5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspsnel5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lspsnel5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lspsnel5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lspsnel6 19478 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
8 | 1, 7 | mpbirand 694 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2048 ⊆ wss 3825 {csn 4435 ‘cfv 6182 Basecbs 16329 LModclmod 19346 LSubSpclss 19415 LSpanclspn 19455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-grp 17884 df-lmod 19348 df-lss 19416 df-lsp 19456 |
This theorem is referenced by: lspsnel5a 19480 lspprid1 19481 lspsnss2 19489 lsmelpr 19575 lspsncmp 19600 lspsnne1 19601 lspsnne2 19602 lspsneq 19606 lspindpi 19616 islbs2 19638 lindsadd 34274 lindsenlbs 34276 lsatelbN 35535 lsmsat 35537 lsatfixedN 35538 l1cvpat 35583 dia2dimlem5 37597 dochsncom 37911 dihjat1lem 37957 dvh4dimlem 37972 lclkrlem2a 38036 lcfrlem6 38076 lcfrlem20 38091 lcfrlem26 38097 lcfrlem36 38107 mapdval2N 38159 mapdrvallem2 38174 mapdindp 38200 mapdh6aN 38264 lspindp5 38299 mapdh8ab 38306 mapdh8e 38313 hdmap1l6a 38338 hdmaprnlem3eN 38387 hdmapoc 38460 |
Copyright terms: Public domain | W3C validator |