Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnel5 | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
Ref | Expression |
---|---|
lspsnel5.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnel5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsnel5 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | lspsnel5.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspsnel5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspsnel5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lspsnel5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lspsnel5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lspsnel6 20171 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
8 | 1, 7 | mpbirand 703 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 ‘cfv 6418 Basecbs 16840 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-lmod 20040 df-lss 20109 df-lsp 20149 |
This theorem is referenced by: lspsnel5a 20173 lspprid1 20174 lspsnss2 20182 lsmelpr 20268 lspsncmp 20293 lspsnne1 20294 lspsnne2 20295 lspsneq 20299 lspindpi 20309 islbs2 20331 lindsadd 35697 lindsenlbs 35699 lsatelbN 36947 lsmsat 36949 lsatfixedN 36950 l1cvpat 36995 dia2dimlem5 39009 dochsncom 39323 dihjat1lem 39369 dvh4dimlem 39384 lclkrlem2a 39448 lcfrlem6 39488 lcfrlem20 39503 lcfrlem26 39509 lcfrlem36 39519 mapdval2N 39571 mapdrvallem2 39586 mapdindp 39612 mapdh6aN 39676 lspindp5 39711 mapdh8ab 39718 mapdh8e 39725 hdmap1l6a 39750 hdmaprnlem3eN 39799 hdmapoc 39872 |
Copyright terms: Public domain | W3C validator |