MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssats2 Structured version   Visualization version   GIF version

Theorem lssats2 20307
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.)
Hypotheses
Ref Expression
lssats2.s 𝑆 = (LSubSp‘𝑊)
lssats2.n 𝑁 = (LSpan‘𝑊)
lssats2.w (𝜑𝑊 ∈ LMod)
lssats2.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssats2 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑊(𝑥)

Proof of Theorem lssats2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦𝑈)
2 lssats2.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
32adantr 482 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑊 ∈ LMod)
4 lssats2.u . . . . . . . 8 (𝜑𝑈𝑆)
5 eqid 2736 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
6 lssats2.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
75, 6lssel 20244 . . . . . . . 8 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
84, 7sylan 581 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
9 lssats2.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
105, 9lspsnid 20300 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
113, 8, 10syl2anc 585 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦 ∈ (𝑁‘{𝑦}))
12 sneq 4575 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1312fveq2d 6808 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦}))
1413eleq2d 2822 . . . . . . 7 (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦})))
1514rspcev 3566 . . . . . 6 ((𝑦𝑈𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
161, 11, 15syl2anc 585 . . . . 5 ((𝜑𝑦𝑈) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
1716ex 414 . . . 4 (𝜑 → (𝑦𝑈 → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
182adantr 482 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑊 ∈ LMod)
194adantr 482 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑈𝑆)
20 simpr 486 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑥𝑈)
216, 9, 18, 19, 20lspsnel5a 20303 . . . . . 6 ((𝜑𝑥𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈)
2221sseld 3925 . . . . 5 ((𝜑𝑥𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2322rexlimdva 3149 . . . 4 (𝜑 → (∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2417, 23impbid 211 . . 3 (𝜑 → (𝑦𝑈 ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
25 eliun 4935 . . 3 (𝑦 𝑥𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
2624, 25bitr4di 289 . 2 (𝜑 → (𝑦𝑈𝑦 𝑥𝑈 (𝑁‘{𝑥})))
2726eqrdv 2734 1 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wrex 3071  {csn 4565   ciun 4931  cfv 6458  Basecbs 16957  LModclmod 20168  LSubSpclss 20238  LSpanclspn 20278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-grp 18625  df-lmod 20170  df-lss 20239  df-lsp 20279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator