![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssats2 | Structured version Visualization version GIF version |
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.) |
Ref | Expression |
---|---|
lssats2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssats2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lssats2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssats2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lssats2 | ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
2 | lssats2.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑊 ∈ LMod) |
4 | lssats2.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
5 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
6 | lssats2.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 5, 6 | lssel 20958 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
8 | 4, 7 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
9 | lssats2.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 5, 9 | lspsnid 21014 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦})) |
11 | 3, 8, 10 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (𝑁‘{𝑦})) |
12 | sneq 4658 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
13 | 12 | fveq2d 6924 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦})) |
14 | 13 | eleq2d 2830 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦}))) |
15 | 14 | rspcev 3635 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑈 ∧ 𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
16 | 1, 11, 15 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
17 | 16 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑈 → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
18 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑊 ∈ LMod) |
19 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
21 | 6, 9, 18, 19, 20 | ellspsn5 21017 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈) |
22 | 21 | sseld 4007 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
23 | 22 | rexlimdva 3161 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
24 | 17, 23 | impbid 212 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
25 | eliun 5019 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) | |
26 | 24, 25 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}))) |
27 | 26 | eqrdv 2738 | 1 ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {csn 4648 ∪ ciun 5015 ‘cfv 6573 Basecbs 17258 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-lmod 20882 df-lss 20953 df-lsp 20993 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |