Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lssats2 | Structured version Visualization version GIF version |
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.) |
Ref | Expression |
---|---|
lssats2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssats2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lssats2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssats2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lssats2 | ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
2 | lssats2.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | 2 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑊 ∈ LMod) |
4 | lssats2.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
5 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
6 | lssats2.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 5, 6 | lssel 20244 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
8 | 4, 7 | sylan 581 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
9 | lssats2.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 5, 9 | lspsnid 20300 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦})) |
11 | 3, 8, 10 | syl2anc 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (𝑁‘{𝑦})) |
12 | sneq 4575 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
13 | 12 | fveq2d 6808 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦})) |
14 | 13 | eleq2d 2822 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦}))) |
15 | 14 | rspcev 3566 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑈 ∧ 𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
16 | 1, 11, 15 | syl2anc 585 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
17 | 16 | ex 414 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑈 → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
18 | 2 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑊 ∈ LMod) |
19 | 4 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
20 | simpr 486 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
21 | 6, 9, 18, 19, 20 | lspsnel5a 20303 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈) |
22 | 21 | sseld 3925 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
23 | 22 | rexlimdva 3149 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
24 | 17, 23 | impbid 211 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
25 | eliun 4935 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) | |
26 | 24, 25 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}))) |
27 | 26 | eqrdv 2734 | 1 ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∃wrex 3071 {csn 4565 ∪ ciun 4931 ‘cfv 6458 Basecbs 16957 LModclmod 20168 LSubSpclss 20238 LSpanclspn 20278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-lmod 20170 df-lss 20239 df-lsp 20279 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |