MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssats2 Structured version   Visualization version   GIF version

Theorem lssats2 19772
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.)
Hypotheses
Ref Expression
lssats2.s 𝑆 = (LSubSp‘𝑊)
lssats2.n 𝑁 = (LSpan‘𝑊)
lssats2.w (𝜑𝑊 ∈ LMod)
lssats2.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssats2 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑊(𝑥)

Proof of Theorem lssats2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦𝑈)
2 lssats2.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
32adantr 484 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑊 ∈ LMod)
4 lssats2.u . . . . . . . 8 (𝜑𝑈𝑆)
5 eqid 2824 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
6 lssats2.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
75, 6lssel 19709 . . . . . . . 8 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
84, 7sylan 583 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
9 lssats2.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
105, 9lspsnid 19765 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
113, 8, 10syl2anc 587 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦 ∈ (𝑁‘{𝑦}))
12 sneq 4560 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1312fveq2d 6665 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦}))
1413eleq2d 2901 . . . . . . 7 (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦})))
1514rspcev 3609 . . . . . 6 ((𝑦𝑈𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
161, 11, 15syl2anc 587 . . . . 5 ((𝜑𝑦𝑈) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
1716ex 416 . . . 4 (𝜑 → (𝑦𝑈 → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
182adantr 484 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑊 ∈ LMod)
194adantr 484 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑈𝑆)
20 simpr 488 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑥𝑈)
216, 9, 18, 19, 20lspsnel5a 19768 . . . . . 6 ((𝜑𝑥𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈)
2221sseld 3952 . . . . 5 ((𝜑𝑥𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2322rexlimdva 3276 . . . 4 (𝜑 → (∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2417, 23impbid 215 . . 3 (𝜑 → (𝑦𝑈 ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
25 eliun 4909 . . 3 (𝑦 𝑥𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
2624, 25syl6bbr 292 . 2 (𝜑 → (𝑦𝑈𝑦 𝑥𝑈 (𝑁‘{𝑥})))
2726eqrdv 2822 1 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wrex 3134  {csn 4550   ciun 4905  cfv 6343  Basecbs 16483  LModclmod 19634  LSubSpclss 19703  LSpanclspn 19743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-lmod 19636  df-lss 19704  df-lsp 19744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator