MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssats2 Structured version   Visualization version   GIF version

Theorem lssats2 21021
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.)
Hypotheses
Ref Expression
lssats2.s 𝑆 = (LSubSp‘𝑊)
lssats2.n 𝑁 = (LSpan‘𝑊)
lssats2.w (𝜑𝑊 ∈ LMod)
lssats2.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssats2 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑊(𝑥)

Proof of Theorem lssats2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦𝑈)
2 lssats2.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
32adantr 480 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑊 ∈ LMod)
4 lssats2.u . . . . . . . 8 (𝜑𝑈𝑆)
5 eqid 2740 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
6 lssats2.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
75, 6lssel 20958 . . . . . . . 8 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
84, 7sylan 579 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
9 lssats2.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
105, 9lspsnid 21014 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
113, 8, 10syl2anc 583 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦 ∈ (𝑁‘{𝑦}))
12 sneq 4658 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1312fveq2d 6924 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦}))
1413eleq2d 2830 . . . . . . 7 (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦})))
1514rspcev 3635 . . . . . 6 ((𝑦𝑈𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
161, 11, 15syl2anc 583 . . . . 5 ((𝜑𝑦𝑈) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
1716ex 412 . . . 4 (𝜑 → (𝑦𝑈 → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
182adantr 480 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑊 ∈ LMod)
194adantr 480 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑈𝑆)
20 simpr 484 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑥𝑈)
216, 9, 18, 19, 20ellspsn5 21017 . . . . . 6 ((𝜑𝑥𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈)
2221sseld 4007 . . . . 5 ((𝜑𝑥𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2322rexlimdva 3161 . . . 4 (𝜑 → (∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2417, 23impbid 212 . . 3 (𝜑 → (𝑦𝑈 ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
25 eliun 5019 . . 3 (𝑦 𝑥𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
2624, 25bitr4di 289 . 2 (𝜑 → (𝑦𝑈𝑦 𝑥𝑈 (𝑁‘{𝑥})))
2726eqrdv 2738 1 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  {csn 4648   ciun 5015  cfv 6573  Basecbs 17258  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-lmod 20882  df-lss 20953  df-lsp 20993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator