| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssats2 | Structured version Visualization version GIF version | ||
| Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| lssats2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lssats2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lssats2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lssats2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lssats2 | ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
| 2 | lssats2.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 4 | lssats2.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 5 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 6 | lssats2.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 5, 6 | lssel 20879 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
| 8 | 4, 7 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
| 9 | lssats2.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 5, 9 | lspsnid 20935 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦})) |
| 11 | 3, 8, 10 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (𝑁‘{𝑦})) |
| 12 | sneq 4587 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 13 | 12 | fveq2d 6835 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦})) |
| 14 | 13 | eleq2d 2819 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦}))) |
| 15 | 14 | rspcev 3573 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑈 ∧ 𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
| 16 | 1, 11, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
| 17 | 16 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑈 → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
| 18 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 19 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
| 21 | 6, 9, 18, 19, 20 | ellspsn5 20938 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈) |
| 22 | 21 | sseld 3929 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
| 23 | 22 | rexlimdva 3134 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
| 24 | 17, 23 | impbid 212 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
| 25 | eliun 4947 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) | |
| 26 | 24, 25 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}))) |
| 27 | 26 | eqrdv 2731 | 1 ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {csn 4577 ∪ ciun 4943 ‘cfv 6489 Basecbs 17127 LModclmod 20802 LSubSpclss 20873 LSpanclspn 20913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-lmod 20804 df-lss 20874 df-lsp 20914 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |