MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssats2 Structured version   Visualization version   GIF version

Theorem lssats2 20273
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.)
Hypotheses
Ref Expression
lssats2.s 𝑆 = (LSubSp‘𝑊)
lssats2.n 𝑁 = (LSpan‘𝑊)
lssats2.w (𝜑𝑊 ∈ LMod)
lssats2.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssats2 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑊(𝑥)

Proof of Theorem lssats2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦𝑈)
2 lssats2.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
32adantr 481 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑊 ∈ LMod)
4 lssats2.u . . . . . . . 8 (𝜑𝑈𝑆)
5 eqid 2740 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
6 lssats2.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
75, 6lssel 20210 . . . . . . . 8 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
84, 7sylan 580 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
9 lssats2.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
105, 9lspsnid 20266 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
113, 8, 10syl2anc 584 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦 ∈ (𝑁‘{𝑦}))
12 sneq 4577 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1312fveq2d 6775 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦}))
1413eleq2d 2826 . . . . . . 7 (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦})))
1514rspcev 3561 . . . . . 6 ((𝑦𝑈𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
161, 11, 15syl2anc 584 . . . . 5 ((𝜑𝑦𝑈) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
1716ex 413 . . . 4 (𝜑 → (𝑦𝑈 → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
182adantr 481 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑊 ∈ LMod)
194adantr 481 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑈𝑆)
20 simpr 485 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑥𝑈)
216, 9, 18, 19, 20lspsnel5a 20269 . . . . . 6 ((𝜑𝑥𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈)
2221sseld 3925 . . . . 5 ((𝜑𝑥𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2322rexlimdva 3215 . . . 4 (𝜑 → (∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2417, 23impbid 211 . . 3 (𝜑 → (𝑦𝑈 ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
25 eliun 4934 . . 3 (𝑦 𝑥𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
2624, 25bitr4di 289 . 2 (𝜑 → (𝑦𝑈𝑦 𝑥𝑈 (𝑁‘{𝑥})))
2726eqrdv 2738 1 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wrex 3067  {csn 4567   ciun 4930  cfv 6432  Basecbs 16923  LModclmod 20134  LSubSpclss 20204  LSpanclspn 20244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-0g 17163  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-grp 18591  df-lmod 20136  df-lss 20205  df-lsp 20245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator