Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . 6
β’ ((π β§ π¦ β π) β π¦ β π) |
2 | | lssats2.w |
. . . . . . . 8
β’ (π β π β LMod) |
3 | 2 | adantr 480 |
. . . . . . 7
β’ ((π β§ π¦ β π) β π β LMod) |
4 | | lssats2.u |
. . . . . . . 8
β’ (π β π β π) |
5 | | eqid 2731 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
6 | | lssats2.s |
. . . . . . . . 9
β’ π = (LSubSpβπ) |
7 | 5, 6 | lssel 20780 |
. . . . . . . 8
β’ ((π β π β§ π¦ β π) β π¦ β (Baseβπ)) |
8 | 4, 7 | sylan 579 |
. . . . . . 7
β’ ((π β§ π¦ β π) β π¦ β (Baseβπ)) |
9 | | lssats2.n |
. . . . . . . 8
β’ π = (LSpanβπ) |
10 | 5, 9 | lspsnid 20836 |
. . . . . . 7
β’ ((π β LMod β§ π¦ β (Baseβπ)) β π¦ β (πβ{π¦})) |
11 | 3, 8, 10 | syl2anc 583 |
. . . . . 6
β’ ((π β§ π¦ β π) β π¦ β (πβ{π¦})) |
12 | | sneq 4638 |
. . . . . . . . 9
β’ (π₯ = π¦ β {π₯} = {π¦}) |
13 | 12 | fveq2d 6895 |
. . . . . . . 8
β’ (π₯ = π¦ β (πβ{π₯}) = (πβ{π¦})) |
14 | 13 | eleq2d 2818 |
. . . . . . 7
β’ (π₯ = π¦ β (π¦ β (πβ{π₯}) β π¦ β (πβ{π¦}))) |
15 | 14 | rspcev 3612 |
. . . . . 6
β’ ((π¦ β π β§ π¦ β (πβ{π¦})) β βπ₯ β π π¦ β (πβ{π₯})) |
16 | 1, 11, 15 | syl2anc 583 |
. . . . 5
β’ ((π β§ π¦ β π) β βπ₯ β π π¦ β (πβ{π₯})) |
17 | 16 | ex 412 |
. . . 4
β’ (π β (π¦ β π β βπ₯ β π π¦ β (πβ{π₯}))) |
18 | 2 | adantr 480 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π β LMod) |
19 | 4 | adantr 480 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π β π) |
20 | | simpr 484 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π₯ β π) |
21 | 6, 9, 18, 19, 20 | lspsnel5a 20839 |
. . . . . 6
β’ ((π β§ π₯ β π) β (πβ{π₯}) β π) |
22 | 21 | sseld 3981 |
. . . . 5
β’ ((π β§ π₯ β π) β (π¦ β (πβ{π₯}) β π¦ β π)) |
23 | 22 | rexlimdva 3154 |
. . . 4
β’ (π β (βπ₯ β π π¦ β (πβ{π₯}) β π¦ β π)) |
24 | 17, 23 | impbid 211 |
. . 3
β’ (π β (π¦ β π β βπ₯ β π π¦ β (πβ{π₯}))) |
25 | | eliun 5001 |
. . 3
β’ (π¦ β βͺ π₯ β π (πβ{π₯}) β βπ₯ β π π¦ β (πβ{π₯})) |
26 | 24, 25 | bitr4di 289 |
. 2
β’ (π β (π¦ β π β π¦ β βͺ
π₯ β π (πβ{π₯}))) |
27 | 26 | eqrdv 2729 |
1
β’ (π β π = βͺ π₯ β π (πβ{π₯})) |