MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneli Structured version   Visualization version   GIF version

Theorem lspsneli 19319
Description: A scalar product with a vector belongs to the span of its singleton. (spansnmul 28940 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lspsnvsel.v 𝑉 = (Base‘𝑊)
lspsnvsel.t · = ( ·𝑠𝑊)
lspsnvsel.f 𝐹 = (Scalar‘𝑊)
lspsnvsel.k 𝐾 = (Base‘𝐹)
lspsnvsel.n 𝑁 = (LSpan‘𝑊)
lspsnvsel.w (𝜑𝑊 ∈ LMod)
lspsnvsel.a (𝜑𝐴𝐾)
lspsnvsel.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspsneli (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))

Proof of Theorem lspsneli
StepHypRef Expression
1 lspsnvsel.w . 2 (𝜑𝑊 ∈ LMod)
2 lspsnvsel.x . . 3 (𝜑𝑋𝑉)
3 lspsnvsel.v . . . 4 𝑉 = (Base‘𝑊)
4 eqid 2797 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lspsnvsel.n . . . 4 𝑁 = (LSpan‘𝑊)
63, 4, 5lspsncl 19295 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
71, 2, 6syl2anc 580 . 2 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
8 lspsnvsel.a . 2 (𝜑𝐴𝐾)
93, 5lspsnid 19311 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
101, 2, 9syl2anc 580 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
11 lspsnvsel.f . . 3 𝐹 = (Scalar‘𝑊)
12 lspsnvsel.t . . 3 · = ( ·𝑠𝑊)
13 lspsnvsel.k . . 3 𝐾 = (Base‘𝐹)
1411, 12, 13, 4lssvscl 19273 . 2 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝐴𝐾𝑋 ∈ (𝑁‘{𝑋}))) → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
151, 7, 8, 10, 14syl22anc 868 1 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  {csn 4366  cfv 6099  (class class class)co 6876  Basecbs 16181  Scalarcsca 16267   ·𝑠 cvsca 16268  LModclmod 19178  LSubSpclss 19247  LSpanclspn 19289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-plusg 16277  df-0g 16414  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-grp 17738  df-minusg 17739  df-sbg 17740  df-mgp 18803  df-ur 18815  df-ring 18862  df-lmod 19180  df-lss 19248  df-lsp 19290
This theorem is referenced by:  lspsnvsi  19322  lsmspsn  19402  lsppreli  19408  lspexch  19448  lvecindp  19457  lvecindp2  19458  lshpdisj  35000  lkrlsp  35115  lshpsmreu  35122  lshpkrlem5  35127  baerlem3lem2  37723  baerlem5alem2  37724  baerlem5blem2  37725
  Copyright terms: Public domain W3C validator