MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel5a Structured version   Visualization version   GIF version

Theorem lspsnel5a 19744
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.)
Hypotheses
Ref Expression
lspsnel5a.s 𝑆 = (LSubSp‘𝑊)
lspsnel5a.n 𝑁 = (LSpan‘𝑊)
lspsnel5a.w (𝜑𝑊 ∈ LMod)
lspsnel5a.a (𝜑𝑈𝑆)
lspsnel5a.x (𝜑𝑋𝑈)
Assertion
Ref Expression
lspsnel5a (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)

Proof of Theorem lspsnel5a
StepHypRef Expression
1 lspsnel5a.x . 2 (𝜑𝑋𝑈)
2 eqid 2820 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 lspsnel5a.s . . 3 𝑆 = (LSubSp‘𝑊)
4 lspsnel5a.n . . 3 𝑁 = (LSpan‘𝑊)
5 lspsnel5a.w . . 3 (𝜑𝑊 ∈ LMod)
6 lspsnel5a.a . . 3 (𝜑𝑈𝑆)
72, 3lssel 19685 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
86, 1, 7syl2anc 586 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
92, 3, 4, 5, 6, 8lspsnel5 19743 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
101, 9mpbid 234 1 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3913  {csn 4543  cfv 6331  Basecbs 16462  LModclmod 19610  LSubSpclss 19679  LSpanclspn 19719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-lmod 19612  df-lss 19680  df-lsp 19720
This theorem is referenced by:  lssats2  19748  lspsn  19750  lspsnvsi  19752  lsmelval2  19833  lspprabs  19843  lspvadd  19844  lspabs3  19869  lsmcv  19889  lspsnat  19893  lsppratlem6  19900  issubassa2  20097  lshpnel  36155  lsatel  36177  lsmsat  36180  lssatomic  36183  lssats  36184  lsat0cv  36205  dia2dimlem10  38245  dochsatshpb  38624  lclkrlem2f  38684  lcfrlem25  38739  lcfrlem35  38749  mapdval2N  38802  mapdrvallem2  38817  mapdpglem8  38851  mapdpglem13  38856  mapdindp0  38891  mapdh6aN  38907  mapdh8e  38956  mapdh9a  38961  hdmap1l6a  38981  hdmapval0  39005  hdmapval3lemN  39009  hdmap10lem  39011  hdmap11lem1  39013  hdmap11lem2  39014  hdmaprnlem4N  39025  hdmaprnlem3eN  39030
  Copyright terms: Public domain W3C validator