MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel5a Structured version   Visualization version   GIF version

Theorem lspsnel5a 20173
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.)
Hypotheses
Ref Expression
lspsnel5a.s 𝑆 = (LSubSp‘𝑊)
lspsnel5a.n 𝑁 = (LSpan‘𝑊)
lspsnel5a.w (𝜑𝑊 ∈ LMod)
lspsnel5a.a (𝜑𝑈𝑆)
lspsnel5a.x (𝜑𝑋𝑈)
Assertion
Ref Expression
lspsnel5a (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)

Proof of Theorem lspsnel5a
StepHypRef Expression
1 lspsnel5a.x . 2 (𝜑𝑋𝑈)
2 eqid 2738 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 lspsnel5a.s . . 3 𝑆 = (LSubSp‘𝑊)
4 lspsnel5a.n . . 3 𝑁 = (LSpan‘𝑊)
5 lspsnel5a.w . . 3 (𝜑𝑊 ∈ LMod)
6 lspsnel5a.a . . 3 (𝜑𝑈𝑆)
72, 3lssel 20114 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
86, 1, 7syl2anc 583 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
92, 3, 4, 5, 6, 8lspsnel5 20172 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
101, 9mpbid 231 1 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  {csn 4558  cfv 6418  Basecbs 16840  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-lmod 20040  df-lss 20109  df-lsp 20149
This theorem is referenced by:  lssats2  20177  lspsn  20179  lspsnvsi  20181  lsmelval2  20262  lspprabs  20272  lspvadd  20273  lspabs3  20298  lsmcv  20318  lspsnat  20322  lsppratlem6  20329  issubassa2  21006  lshpnel  36924  lsatel  36946  lsmsat  36949  lssatomic  36952  lssats  36953  lsat0cv  36974  dia2dimlem10  39014  dochsatshpb  39393  lclkrlem2f  39453  lcfrlem25  39508  lcfrlem35  39518  mapdval2N  39571  mapdrvallem2  39586  mapdpglem8  39620  mapdpglem13  39625  mapdindp0  39660  mapdh6aN  39676  mapdh8e  39725  mapdh9a  39730  hdmap1l6a  39750  hdmapval0  39774  hdmapval3lemN  39778  hdmap10lem  39780  hdmap11lem1  39782  hdmap11lem2  39783  hdmaprnlem4N  39794  hdmaprnlem3eN  39799
  Copyright terms: Public domain W3C validator