Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnel5a | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
Ref | Expression |
---|---|
lspsnel5a.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5a.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5a.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5a.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
lspsnel5a | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5a.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lspsnel5a.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspsnel5a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lspsnel5a.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lspsnel5a.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3 | lssel 20114 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
8 | 6, 1, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
9 | 2, 3, 4, 5, 6, 8 | lspsnel5 20172 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
10 | 1, 9 | mpbid 231 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 ‘cfv 6418 Basecbs 16840 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-lmod 20040 df-lss 20109 df-lsp 20149 |
This theorem is referenced by: lssats2 20177 lspsn 20179 lspsnvsi 20181 lsmelval2 20262 lspprabs 20272 lspvadd 20273 lspabs3 20298 lsmcv 20318 lspsnat 20322 lsppratlem6 20329 issubassa2 21006 lshpnel 36924 lsatel 36946 lsmsat 36949 lssatomic 36952 lssats 36953 lsat0cv 36974 dia2dimlem10 39014 dochsatshpb 39393 lclkrlem2f 39453 lcfrlem25 39508 lcfrlem35 39518 mapdval2N 39571 mapdrvallem2 39586 mapdpglem8 39620 mapdpglem13 39625 mapdindp0 39660 mapdh6aN 39676 mapdh8e 39725 mapdh9a 39730 hdmap1l6a 39750 hdmapval0 39774 hdmapval3lemN 39778 hdmap10lem 39780 hdmap11lem1 39782 hdmap11lem2 39783 hdmaprnlem4N 39794 hdmaprnlem3eN 39799 |
Copyright terms: Public domain | W3C validator |