Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnel5a | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
Ref | Expression |
---|---|
lspsnel5a.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5a.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5a.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5a.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
lspsnel5a | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5a.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lspsnel5a.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspsnel5a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lspsnel5a.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lspsnel5a.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3 | lssel 20199 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
8 | 6, 1, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
9 | 2, 3, 4, 5, 6, 8 | lspsnel5 20257 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
10 | 1, 9 | mpbid 231 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 ‘cfv 6433 Basecbs 16912 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 df-lsp 20234 |
This theorem is referenced by: lssats2 20262 lspsn 20264 lspsnvsi 20266 lsmelval2 20347 lspprabs 20357 lspvadd 20358 lspabs3 20383 lsmcv 20403 lspsnat 20407 lsppratlem6 20414 issubassa2 21096 lshpnel 36997 lsatel 37019 lsmsat 37022 lssatomic 37025 lssats 37026 lsat0cv 37047 dia2dimlem10 39087 dochsatshpb 39466 lclkrlem2f 39526 lcfrlem25 39581 lcfrlem35 39591 mapdval2N 39644 mapdrvallem2 39659 mapdpglem8 39693 mapdpglem13 39698 mapdindp0 39733 mapdh6aN 39749 mapdh8e 39798 mapdh9a 39803 hdmap1l6a 39823 hdmapval0 39847 hdmapval3lemN 39851 hdmap10lem 39853 hdmap11lem1 39855 hdmap11lem2 39856 hdmaprnlem4N 39867 hdmaprnlem3eN 39872 |
Copyright terms: Public domain | W3C validator |