![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel5a | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
Ref | Expression |
---|---|
lspsnel5a.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5a.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5a.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5a.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
lspsnel5a | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5a.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
2 | eqid 2799 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lspsnel5a.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspsnel5a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lspsnel5a.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lspsnel5a.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3 | lssel 19256 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
8 | 6, 1, 7 | syl2anc 580 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
9 | 2, 3, 4, 5, 6, 8 | lspsnel5 19316 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
10 | 1, 9 | mpbid 224 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ⊆ wss 3769 {csn 4368 ‘cfv 6101 Basecbs 16184 LModclmod 19181 LSubSpclss 19250 LSpanclspn 19292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-lmod 19183 df-lss 19251 df-lsp 19293 |
This theorem is referenced by: lssats2 19321 lspsn 19323 lspsnvsi 19325 lsmelval2 19406 lspprabs 19416 lspvadd 19417 lspabs3 19442 lsmcv 19463 lspsnat 19467 lsppratlem6 19475 issubassa2 19668 lshpnel 35004 lsatel 35026 lsmsat 35029 lssatomic 35032 lssats 35033 lsat0cv 35054 dia2dimlem10 37094 dochsatshpb 37473 lclkrlem2f 37533 lcfrlem25 37588 lcfrlem35 37598 mapdval2N 37651 mapdrvallem2 37666 mapdpglem8 37700 mapdpglem13 37705 mapdindp0 37740 mapdh6aN 37756 mapdh8e 37805 mapdh9a 37810 hdmap1l6a 37830 hdmapval0 37854 hdmapval3lemN 37858 hdmap10lem 37860 hdmap11lem1 37862 hdmap11lem2 37863 hdmaprnlem4N 37874 hdmaprnlem3eN 37879 |
Copyright terms: Public domain | W3C validator |