![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ne0gt0 | Structured version Visualization version GIF version |
Description: A nonzero nonnegative number is positive. (Contributed by NM, 20-Nov-2007.) |
Ref | Expression |
---|---|
ne0gt0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11215 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | lttri2 11295 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
3 | 1, 2 | mpan2 688 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
5 | lenlt 11291 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) | |
6 | 1, 5 | mpan 687 | . . . 4 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
7 | 6 | biimpa 476 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 𝐴 < 0) |
8 | biorf 933 | . . 3 ⊢ (¬ 𝐴 < 0 → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
10 | 4, 9 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∈ wcel 2098 ≠ wne 2932 class class class wbr 5139 ℝcr 11106 0cc0 11107 < clt 11247 ≤ cle 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-addrcl 11168 ax-rnegex 11178 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 |
This theorem is referenced by: ne0gt0d 11350 hashneq0 14325 fvmptnn04ifb 22697 nmgt0 24483 mdegle0 25957 nvgt0 30422 |
Copyright terms: Public domain | W3C validator |