| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqled | Structured version Visualization version GIF version | ||
| Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eqled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eqled.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eqled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqled.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | eqled.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | eqle 11252 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-pre-lttri 11118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: cjcn2 15542 abscvgcvg 15761 dvfsumlem3 25911 dvradcnv 26306 ppip1le 27047 dchrvmasumiflem2 27389 dchrisum0lem3 27406 rplogsum 27414 mudivsum 27417 dnibndlem6 36444 aks4d1p1p2 42031 unitscyglem4 42159 fltnltalem 42623 int-eqineqd 44152 sublevolico 45955 fourierdlem10 46088 fourierdlem12 46090 fourierdlem37 46115 fourierdlem48 46125 fourierdlem54 46131 fourierdlem79 46156 ioorrnopnxrlem 46277 hoidmvval0b 46561 hoidmv1lelem1 46562 hoidmvlelem2 46567 ovnhoi 46574 volico2 46612 ovolval5lem2 46624 vonioolem2 46652 lighneallem2 47580 fllog2 48530 |
| Copyright terms: Public domain | W3C validator |