MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqled Structured version   Visualization version   GIF version

Theorem eqled 11008
Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eqled.1 (𝜑𝐴 ∈ ℝ)
eqled.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqled (𝜑𝐴𝐵)

Proof of Theorem eqled
StepHypRef Expression
1 eqled.1 . 2 (𝜑𝐴 ∈ ℝ)
2 eqled.2 . 2 (𝜑𝐴 = 𝐵)
3 eqle 11007 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
41, 2, 3syl2anc 583 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   class class class wbr 5070  cr 10801  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-pre-lttri 10876
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  cjcn2  15237  abscvgcvg  15459  dvfsumlem3  25097  dvradcnv  25485  ppip1le  26215  dchrvmasumiflem2  26555  dchrisum0lem3  26572  rplogsum  26580  mudivsum  26583  dnibndlem6  34590  aks4d1p1p2  40006  fltnltalem  40415  int-eqineqd  41690  sublevolico  43415  fourierdlem10  43548  fourierdlem12  43550  fourierdlem37  43575  fourierdlem48  43585  fourierdlem54  43591  fourierdlem79  43616  ioorrnopnxrlem  43737  hoidmvval0b  44018  hoidmv1lelem1  44019  hoidmvlelem2  44024  ovnhoi  44031  volico2  44069  ovolval5lem2  44081  vonioolem2  44109  lighneallem2  44946  fllog2  45802
  Copyright terms: Public domain W3C validator