MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqled Structured version   Visualization version   GIF version

Theorem eqled 11211
Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eqled.1 (𝜑𝐴 ∈ ℝ)
eqled.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqled (𝜑𝐴𝐵)

Proof of Theorem eqled
StepHypRef Expression
1 eqled.1 . 2 (𝜑𝐴 ∈ ℝ)
2 eqled.2 . 2 (𝜑𝐴 = 𝐵)
3 eqle 11210 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
41, 2, 3syl2anc 584 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5086  cr 11000  cle 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-pre-lttri 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147
This theorem is referenced by:  cjcn2  15502  abscvgcvg  15721  dvfsumlem3  25957  dvradcnv  26352  ppip1le  27093  dchrvmasumiflem2  27435  dchrisum0lem3  27452  rplogsum  27460  mudivsum  27463  dnibndlem6  36517  aks4d1p1p2  42103  unitscyglem4  42231  fltnltalem  42695  int-eqineqd  44223  sublevolico  46022  fourierdlem10  46155  fourierdlem12  46157  fourierdlem37  46182  fourierdlem48  46192  fourierdlem54  46198  fourierdlem79  46223  ioorrnopnxrlem  46344  hoidmvval0b  46628  hoidmv1lelem1  46629  hoidmvlelem2  46634  ovnhoi  46641  volico2  46679  ovolval5lem2  46691  vonioolem2  46719  lighneallem2  47637  fllog2  48600
  Copyright terms: Public domain W3C validator