Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqled | Structured version Visualization version GIF version |
Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eqled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
eqled.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqled.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | eqled.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eqle 11077 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ℝcr 10871 ≤ cle 11011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-pre-lttri 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 |
This theorem is referenced by: cjcn2 15307 abscvgcvg 15529 dvfsumlem3 25190 dvradcnv 25578 ppip1le 26308 dchrvmasumiflem2 26648 dchrisum0lem3 26665 rplogsum 26673 mudivsum 26676 dnibndlem6 34659 aks4d1p1p2 40075 fltnltalem 40496 int-eqineqd 41771 sublevolico 43496 fourierdlem10 43629 fourierdlem12 43631 fourierdlem37 43656 fourierdlem48 43666 fourierdlem54 43672 fourierdlem79 43697 ioorrnopnxrlem 43818 hoidmvval0b 44099 hoidmv1lelem1 44100 hoidmvlelem2 44105 ovnhoi 44112 volico2 44150 ovolval5lem2 44162 vonioolem2 44190 lighneallem2 45027 fllog2 45883 |
Copyright terms: Public domain | W3C validator |