| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqled | Structured version Visualization version GIF version | ||
| Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eqled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eqled.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eqled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqled.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | eqled.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | eqle 11276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: cjcn2 15566 abscvgcvg 15785 dvfsumlem3 25935 dvradcnv 26330 ppip1le 27071 dchrvmasumiflem2 27413 dchrisum0lem3 27430 rplogsum 27438 mudivsum 27441 dnibndlem6 36471 aks4d1p1p2 42058 unitscyglem4 42186 fltnltalem 42650 int-eqineqd 44179 sublevolico 45982 fourierdlem10 46115 fourierdlem12 46117 fourierdlem37 46142 fourierdlem48 46152 fourierdlem54 46158 fourierdlem79 46183 ioorrnopnxrlem 46304 hoidmvval0b 46588 hoidmv1lelem1 46589 hoidmvlelem2 46594 ovnhoi 46601 volico2 46639 ovolval5lem2 46651 vonioolem2 46679 lighneallem2 47607 fllog2 48557 |
| Copyright terms: Public domain | W3C validator |