| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqled | Structured version Visualization version GIF version | ||
| Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eqled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eqled.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eqled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqled.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | eqled.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | eqle 11236 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-pre-lttri 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: cjcn2 15525 abscvgcvg 15744 dvfsumlem3 25951 dvradcnv 26346 ppip1le 27087 dchrvmasumiflem2 27429 dchrisum0lem3 27446 rplogsum 27454 mudivsum 27457 dnibndlem6 36459 aks4d1p1p2 42046 unitscyglem4 42174 fltnltalem 42638 int-eqineqd 44166 sublevolico 45969 fourierdlem10 46102 fourierdlem12 46104 fourierdlem37 46129 fourierdlem48 46139 fourierdlem54 46145 fourierdlem79 46170 ioorrnopnxrlem 46291 hoidmvval0b 46575 hoidmv1lelem1 46576 hoidmvlelem2 46581 ovnhoi 46588 volico2 46626 ovolval5lem2 46638 vonioolem2 46666 lighneallem2 47594 fllog2 48557 |
| Copyright terms: Public domain | W3C validator |