MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqled Structured version   Visualization version   GIF version

Theorem eqled 11253
Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eqled.1 (𝜑𝐴 ∈ ℝ)
eqled.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqled (𝜑𝐴𝐵)

Proof of Theorem eqled
StepHypRef Expression
1 eqled.1 . 2 (𝜑𝐴 ∈ ℝ)
2 eqled.2 . 2 (𝜑𝐴 = 𝐵)
3 eqle 11252 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
41, 2, 3syl2anc 584 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5102  cr 11043  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-pre-lttri 11118
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190
This theorem is referenced by:  cjcn2  15542  abscvgcvg  15761  dvfsumlem3  25911  dvradcnv  26306  ppip1le  27047  dchrvmasumiflem2  27389  dchrisum0lem3  27406  rplogsum  27414  mudivsum  27417  dnibndlem6  36444  aks4d1p1p2  42031  unitscyglem4  42159  fltnltalem  42623  int-eqineqd  44152  sublevolico  45955  fourierdlem10  46088  fourierdlem12  46090  fourierdlem37  46115  fourierdlem48  46125  fourierdlem54  46131  fourierdlem79  46156  ioorrnopnxrlem  46277  hoidmvval0b  46561  hoidmv1lelem1  46562  hoidmvlelem2  46567  ovnhoi  46574  volico2  46612  ovolval5lem2  46624  vonioolem2  46652  lighneallem2  47580  fllog2  48530
  Copyright terms: Public domain W3C validator