| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqled | Structured version Visualization version GIF version | ||
| Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eqled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eqled.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| eqled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqled.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | eqled.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | eqle 11226 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ℝcr 11016 ≤ cle 11158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-pre-lttri 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 |
| This theorem is referenced by: cjcn2 15514 abscvgcvg 15733 dvfsumlem3 25982 dvradcnv 26377 ppip1le 27118 dchrvmasumiflem2 27460 dchrisum0lem3 27477 rplogsum 27485 mudivsum 27488 dnibndlem6 36599 aks4d1p1p2 42236 unitscyglem4 42364 fltnltalem 42820 int-eqineqd 44347 sublevolico 46144 fourierdlem10 46277 fourierdlem12 46279 fourierdlem37 46304 fourierdlem48 46314 fourierdlem54 46320 fourierdlem79 46345 ioorrnopnxrlem 46466 hoidmvval0b 46750 hoidmv1lelem1 46751 hoidmvlelem2 46756 ovnhoi 46763 volico2 46801 ovolval5lem2 46813 vonioolem2 46841 lighneallem2 47768 fllog2 48730 |
| Copyright terms: Public domain | W3C validator |