Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqled | Structured version Visualization version GIF version |
Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eqled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
eqled.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqled.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | eqled.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eqle 11077 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: cjcn2 15309 abscvgcvg 15531 dvfsumlem3 25192 dvradcnv 25580 ppip1le 26310 dchrvmasumiflem2 26650 dchrisum0lem3 26667 rplogsum 26675 mudivsum 26678 dnibndlem6 34663 aks4d1p1p2 40078 fltnltalem 40499 int-eqineqd 41801 sublevolico 43525 fourierdlem10 43658 fourierdlem12 43660 fourierdlem37 43685 fourierdlem48 43695 fourierdlem54 43701 fourierdlem79 43726 ioorrnopnxrlem 43847 hoidmvval0b 44128 hoidmv1lelem1 44129 hoidmvlelem2 44134 ovnhoi 44141 volico2 44179 ovolval5lem2 44191 vonioolem2 44219 lighneallem2 45058 fllog2 45914 |
Copyright terms: Public domain | W3C validator |