MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpos Structured version   Visualization version   GIF version

Theorem ltaddpos 11668
Description: Adding a positive number to another number increases it. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
ltaddpos ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))

Proof of Theorem ltaddpos
StepHypRef Expression
1 0re 11176 . . 3 0 ∈ ℝ
2 ltadd2 11278 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 + 0) < (𝐵 + 𝐴)))
31, 2mp3an1 1450 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 + 0) < (𝐵 + 𝐴)))
4 recn 11158 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
54addridd 11374 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵)
65adantl 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 0) = 𝐵)
76breq1d 5117 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 0) < (𝐵 + 𝐴) ↔ 𝐵 < (𝐵 + 𝐴)))
83, 7bitrd 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213
This theorem is referenced by:  ltaddpos2  11669  ltsubpos  11670  posdif  11671  ltaddposi  11727  ltaddposd  11762  ltp1  12022  recreclt  12082  ltaddrp  12990  ccatval21sw  14550  ltoddhalfle  16331  dirkercncflem1  46101
  Copyright terms: Public domain W3C validator