MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flbi2 Structured version   Visualization version   GIF version

Theorem flbi2 13271
Description: A condition equivalent to floor. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
flbi2 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹𝐹 < 1)))

Proof of Theorem flbi2
StepHypRef Expression
1 zre 12059 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 readdcl 10691 . . . 4 ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝑁 + 𝐹) ∈ ℝ)
31, 2sylan 583 . . 3 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → (𝑁 + 𝐹) ∈ ℝ)
4 simpl 486 . . 3 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → 𝑁 ∈ ℤ)
5 flbi 13270 . . 3 (((𝑁 + 𝐹) ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1))))
63, 4, 5syl2anc 587 . 2 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1))))
7 addge01 11221 . . . 4 ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (0 ≤ 𝐹𝑁 ≤ (𝑁 + 𝐹)))
8 1re 10712 . . . . . 6 1 ∈ ℝ
9 ltadd2 10815 . . . . . 6 ((𝐹 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1)))
108, 9mp3an2 1450 . . . . 5 ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1)))
1110ancoms 462 . . . 4 ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1)))
127, 11anbi12d 634 . . 3 ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → ((0 ≤ 𝐹𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1))))
131, 12sylan 583 . 2 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((0 ≤ 𝐹𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1))))
146, 13bitr4d 285 1 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹𝐹 < 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113   class class class wbr 5027  cfv 6333  (class class class)co 7164  cr 10607  0cc0 10608  1c1 10609   + caddc 10611   < clt 10746  cle 10747  cz 12055  cfl 13244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-n0 11970  df-z 12056  df-uz 12318  df-fl 13246
This theorem is referenced by:  adddivflid  13272  ico01fl0  13273  divfl0  13278  fldiv4p1lem1div2  13289  fldiv  13312  modid  13348  flodddiv4  15851  bitsp1o  15869  fldivp1  16326  fourierdlem26  43200  zofldiv2ALTV  44632  zofldiv2  45395
  Copyright terms: Public domain W3C validator