MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flbi2 Structured version   Visualization version   GIF version

Theorem flbi2 12831
Description: A condition equivalent to floor. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
flbi2 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹𝐹 < 1)))

Proof of Theorem flbi2
StepHypRef Expression
1 zre 11632 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 readdcl 10276 . . . 4 ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝑁 + 𝐹) ∈ ℝ)
31, 2sylan 575 . . 3 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → (𝑁 + 𝐹) ∈ ℝ)
4 simpl 474 . . 3 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → 𝑁 ∈ ℤ)
5 flbi 12830 . . 3 (((𝑁 + 𝐹) ∈ ℝ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1))))
63, 4, 5syl2anc 579 . 2 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1))))
7 addge01 10796 . . . 4 ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (0 ≤ 𝐹𝑁 ≤ (𝑁 + 𝐹)))
8 1re 10297 . . . . . 6 1 ∈ ℝ
9 ltadd2 10399 . . . . . 6 ((𝐹 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1)))
108, 9mp3an2 1573 . . . . 5 ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1)))
1110ancoms 450 . . . 4 ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1)))
127, 11anbi12d 624 . . 3 ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → ((0 ≤ 𝐹𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1))))
131, 12sylan 575 . 2 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((0 ≤ 𝐹𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1))))
146, 13bitr4d 273 1 ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℝ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹𝐹 < 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155   class class class wbr 4811  cfv 6070  (class class class)co 6846  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   < clt 10332  cle 10333  cz 11628  cfl 12804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-sup 8559  df-inf 8560  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-n0 11543  df-z 11629  df-uz 11892  df-fl 12806
This theorem is referenced by:  adddivflid  12832  ico01fl0  12833  divfl0  12838  fldiv4p1lem1div2  12849  fldiv  12872  modid  12908  flodddiv4  15432  bitsp1o  15450  fldivp1  15894  fourierdlem26  41011  zofldiv2ALTV  42274  zofldiv2  43018
  Copyright terms: Public domain W3C validator