Step | Hyp | Ref
| Expression |
1 | | mrsubvr.v |
. . . 4
⊢ 𝑉 = (mVR‘𝑇) |
2 | | mrsubvr.r |
. . . 4
⊢ 𝑅 = (mREx‘𝑇) |
3 | | mrsubvr.s |
. . . 4
⊢ 𝑆 = (mRSubst‘𝑇) |
4 | 1, 2, 3 | mrsubff 33374 |
. . 3
⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
5 | | mapsspm 8622 |
. . . 4
⊢ (𝑅 ↑m 𝑉) ⊆ (𝑅 ↑pm 𝑉) |
6 | 5 | a1i 11 |
. . 3
⊢ (𝑇 ∈ 𝑊 → (𝑅 ↑m 𝑉) ⊆ (𝑅 ↑pm 𝑉)) |
7 | 4, 6 | fssresd 6625 |
. 2
⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)⟶(𝑅 ↑m 𝑅)) |
8 | | fveq1 6755 |
. . . . . 6
⊢ ((𝑆‘𝑓) = (𝑆‘𝑔) → ((𝑆‘𝑓)‘〈“𝑣”〉) = ((𝑆‘𝑔)‘〈“𝑣”〉)) |
9 | | simplrl 773 |
. . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑓 ∈ (𝑅 ↑m 𝑉)) |
10 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑅 ↑m 𝑉) → 𝑓:𝑉⟶𝑅) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑓:𝑉⟶𝑅) |
12 | | ssidd 3940 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑉 ⊆ 𝑉) |
13 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) |
14 | 1, 2, 3 | mrsubvr 33373 |
. . . . . . . 8
⊢ ((𝑓:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑓)‘〈“𝑣”〉) = (𝑓‘𝑣)) |
15 | 11, 12, 13, 14 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑓)‘〈“𝑣”〉) = (𝑓‘𝑣)) |
16 | | simplrr 774 |
. . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑔 ∈ (𝑅 ↑m 𝑉)) |
17 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝑅 ↑m 𝑉) → 𝑔:𝑉⟶𝑅) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑔:𝑉⟶𝑅) |
19 | 1, 2, 3 | mrsubvr 33373 |
. . . . . . . 8
⊢ ((𝑔:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑔)‘〈“𝑣”〉) = (𝑔‘𝑣)) |
20 | 18, 12, 13, 19 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑔)‘〈“𝑣”〉) = (𝑔‘𝑣)) |
21 | 15, 20 | eqeq12d 2754 |
. . . . . 6
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → (((𝑆‘𝑓)‘〈“𝑣”〉) = ((𝑆‘𝑔)‘〈“𝑣”〉) ↔ (𝑓‘𝑣) = (𝑔‘𝑣))) |
22 | 8, 21 | syl5ib 243 |
. . . . 5
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑓) = (𝑆‘𝑔) → (𝑓‘𝑣) = (𝑔‘𝑣))) |
23 | 22 | ralrimdva 3112 |
. . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) → ((𝑆‘𝑓) = (𝑆‘𝑔) → ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) |
24 | | fvres 6775 |
. . . . . 6
⊢ (𝑓 ∈ (𝑅 ↑m 𝑉) → ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = (𝑆‘𝑓)) |
25 | | fvres 6775 |
. . . . . 6
⊢ (𝑔 ∈ (𝑅 ↑m 𝑉) → ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) = (𝑆‘𝑔)) |
26 | 24, 25 | eqeqan12d 2752 |
. . . . 5
⊢ ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) ↔ (𝑆‘𝑓) = (𝑆‘𝑔))) |
27 | 26 | adantl 481 |
. . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) → (((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) ↔ (𝑆‘𝑓) = (𝑆‘𝑔))) |
28 | | ffn 6584 |
. . . . . . 7
⊢ (𝑓:𝑉⟶𝑅 → 𝑓 Fn 𝑉) |
29 | | ffn 6584 |
. . . . . . 7
⊢ (𝑔:𝑉⟶𝑅 → 𝑔 Fn 𝑉) |
30 | | eqfnfv 6891 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑉 ∧ 𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) |
31 | 28, 29, 30 | syl2an 595 |
. . . . . 6
⊢ ((𝑓:𝑉⟶𝑅 ∧ 𝑔:𝑉⟶𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) |
32 | 10, 17, 31 | syl2an 595 |
. . . . 5
⊢ ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) |
33 | 32 | adantl 481 |
. . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) |
34 | 23, 27, 33 | 3imtr4d 293 |
. . 3
⊢ ((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) → (((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) → 𝑓 = 𝑔)) |
35 | 34 | ralrimivva 3114 |
. 2
⊢ (𝑇 ∈ 𝑊 → ∀𝑓 ∈ (𝑅 ↑m 𝑉)∀𝑔 ∈ (𝑅 ↑m 𝑉)(((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) → 𝑓 = 𝑔)) |
36 | | dff13 7109 |
. 2
⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅) ↔ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)⟶(𝑅 ↑m 𝑅) ∧ ∀𝑓 ∈ (𝑅 ↑m 𝑉)∀𝑔 ∈ (𝑅 ↑m 𝑉)(((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) → 𝑓 = 𝑔))) |
37 | 7, 35, 36 | sylanbrc 582 |
1
⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅)) |