Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubff1 Structured version   Visualization version   GIF version

Theorem mrsubff1 35506
Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubff1 (𝑇𝑊 → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅))

Proof of Theorem mrsubff1
Dummy variables 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubvr.v . . . 4 𝑉 = (mVR‘𝑇)
2 mrsubvr.r . . . 4 𝑅 = (mREx‘𝑇)
3 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
41, 2, 3mrsubff 35504 . . 3 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
5 mapsspm 8810 . . . 4 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
65a1i 11 . . 3 (𝑇𝑊 → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
74, 6fssresd 6695 . 2 (𝑇𝑊 → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)⟶(𝑅m 𝑅))
8 fveq1 6825 . . . . . 6 ((𝑆𝑓) = (𝑆𝑔) → ((𝑆𝑓)‘⟨“𝑣”⟩) = ((𝑆𝑔)‘⟨“𝑣”⟩))
9 simplrl 776 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑓 ∈ (𝑅m 𝑉))
10 elmapi 8783 . . . . . . . . 9 (𝑓 ∈ (𝑅m 𝑉) → 𝑓:𝑉𝑅)
119, 10syl 17 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑓:𝑉𝑅)
12 ssidd 3961 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑉𝑉)
13 simpr 484 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑣𝑉)
141, 2, 3mrsubvr 35503 . . . . . . . 8 ((𝑓:𝑉𝑅𝑉𝑉𝑣𝑉) → ((𝑆𝑓)‘⟨“𝑣”⟩) = (𝑓𝑣))
1511, 12, 13, 14syl3anc 1373 . . . . . . 7 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓)‘⟨“𝑣”⟩) = (𝑓𝑣))
16 simplrr 777 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑔 ∈ (𝑅m 𝑉))
17 elmapi 8783 . . . . . . . . 9 (𝑔 ∈ (𝑅m 𝑉) → 𝑔:𝑉𝑅)
1816, 17syl 17 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑔:𝑉𝑅)
191, 2, 3mrsubvr 35503 . . . . . . . 8 ((𝑔:𝑉𝑅𝑉𝑉𝑣𝑉) → ((𝑆𝑔)‘⟨“𝑣”⟩) = (𝑔𝑣))
2018, 12, 13, 19syl3anc 1373 . . . . . . 7 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑔)‘⟨“𝑣”⟩) = (𝑔𝑣))
2115, 20eqeq12d 2745 . . . . . 6 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → (((𝑆𝑓)‘⟨“𝑣”⟩) = ((𝑆𝑔)‘⟨“𝑣”⟩) ↔ (𝑓𝑣) = (𝑔𝑣)))
228, 21imbitrid 244 . . . . 5 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓) = (𝑆𝑔) → (𝑓𝑣) = (𝑔𝑣)))
2322ralrimdva 3129 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((𝑆𝑓) = (𝑆𝑔) → ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
24 fvres 6845 . . . . . 6 (𝑓 ∈ (𝑅m 𝑉) → ((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = (𝑆𝑓))
25 fvres 6845 . . . . . 6 (𝑔 ∈ (𝑅m 𝑉) → ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) = (𝑆𝑔))
2624, 25eqeqan12d 2743 . . . . 5 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
2726adantl 481 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
28 ffn 6656 . . . . . . 7 (𝑓:𝑉𝑅𝑓 Fn 𝑉)
29 ffn 6656 . . . . . . 7 (𝑔:𝑉𝑅𝑔 Fn 𝑉)
30 eqfnfv 6969 . . . . . . 7 ((𝑓 Fn 𝑉𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3128, 29, 30syl2an 596 . . . . . 6 ((𝑓:𝑉𝑅𝑔:𝑉𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3210, 17, 31syl2an 596 . . . . 5 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3332adantl 481 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3423, 27, 333imtr4d 294 . . 3 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔))
3534ralrimivva 3172 . 2 (𝑇𝑊 → ∀𝑓 ∈ (𝑅m 𝑉)∀𝑔 ∈ (𝑅m 𝑉)(((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔))
36 dff13 7195 . 2 ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅) ↔ ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)⟶(𝑅m 𝑅) ∧ ∀𝑓 ∈ (𝑅m 𝑉)∀𝑔 ∈ (𝑅m 𝑉)(((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔)))
377, 35, 36sylanbrc 583 1 (𝑇𝑊 → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3905  cres 5625   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  m cmap 8760  pm cpm 8761  ⟨“cs1 14521  mVRcmvar 35453  mRExcmrex 35458  mRSubstcmrsub 35462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-fzo 13577  df-seq 13928  df-hash 14257  df-word 14440  df-concat 14497  df-s1 14522  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-0g 17364  df-gsum 17365  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-frmd 18742  df-mrex 35478  df-mrsub 35482
This theorem is referenced by:  mrsubff1o  35507  msubff1  35548
  Copyright terms: Public domain W3C validator