Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubff1 Structured version   Visualization version   GIF version

Theorem mrsubff1 33581
Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubff1 (𝑇𝑊 → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅))

Proof of Theorem mrsubff1
Dummy variables 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubvr.v . . . 4 𝑉 = (mVR‘𝑇)
2 mrsubvr.r . . . 4 𝑅 = (mREx‘𝑇)
3 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
41, 2, 3mrsubff 33579 . . 3 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
5 mapsspm 8712 . . . 4 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
65a1i 11 . . 3 (𝑇𝑊 → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
74, 6fssresd 6678 . 2 (𝑇𝑊 → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)⟶(𝑅m 𝑅))
8 fveq1 6810 . . . . . 6 ((𝑆𝑓) = (𝑆𝑔) → ((𝑆𝑓)‘⟨“𝑣”⟩) = ((𝑆𝑔)‘⟨“𝑣”⟩))
9 simplrl 774 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑓 ∈ (𝑅m 𝑉))
10 elmapi 8685 . . . . . . . . 9 (𝑓 ∈ (𝑅m 𝑉) → 𝑓:𝑉𝑅)
119, 10syl 17 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑓:𝑉𝑅)
12 ssidd 3954 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑉𝑉)
13 simpr 485 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑣𝑉)
141, 2, 3mrsubvr 33578 . . . . . . . 8 ((𝑓:𝑉𝑅𝑉𝑉𝑣𝑉) → ((𝑆𝑓)‘⟨“𝑣”⟩) = (𝑓𝑣))
1511, 12, 13, 14syl3anc 1370 . . . . . . 7 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓)‘⟨“𝑣”⟩) = (𝑓𝑣))
16 simplrr 775 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑔 ∈ (𝑅m 𝑉))
17 elmapi 8685 . . . . . . . . 9 (𝑔 ∈ (𝑅m 𝑉) → 𝑔:𝑉𝑅)
1816, 17syl 17 . . . . . . . 8 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → 𝑔:𝑉𝑅)
191, 2, 3mrsubvr 33578 . . . . . . . 8 ((𝑔:𝑉𝑅𝑉𝑉𝑣𝑉) → ((𝑆𝑔)‘⟨“𝑣”⟩) = (𝑔𝑣))
2018, 12, 13, 19syl3anc 1370 . . . . . . 7 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑔)‘⟨“𝑣”⟩) = (𝑔𝑣))
2115, 20eqeq12d 2753 . . . . . 6 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → (((𝑆𝑓)‘⟨“𝑣”⟩) = ((𝑆𝑔)‘⟨“𝑣”⟩) ↔ (𝑓𝑣) = (𝑔𝑣)))
228, 21syl5ib 243 . . . . 5 (((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓) = (𝑆𝑔) → (𝑓𝑣) = (𝑔𝑣)))
2322ralrimdva 3148 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((𝑆𝑓) = (𝑆𝑔) → ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
24 fvres 6830 . . . . . 6 (𝑓 ∈ (𝑅m 𝑉) → ((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = (𝑆𝑓))
25 fvres 6830 . . . . . 6 (𝑔 ∈ (𝑅m 𝑉) → ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) = (𝑆𝑔))
2624, 25eqeqan12d 2751 . . . . 5 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
2726adantl 482 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
28 ffn 6637 . . . . . . 7 (𝑓:𝑉𝑅𝑓 Fn 𝑉)
29 ffn 6637 . . . . . . 7 (𝑔:𝑉𝑅𝑔 Fn 𝑉)
30 eqfnfv 6948 . . . . . . 7 ((𝑓 Fn 𝑉𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3128, 29, 30syl2an 596 . . . . . 6 ((𝑓:𝑉𝑅𝑔:𝑉𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3210, 17, 31syl2an 596 . . . . 5 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3332adantl 482 . . . 4 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
3423, 27, 333imtr4d 293 . . 3 ((𝑇𝑊 ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔))
3534ralrimivva 3194 . 2 (𝑇𝑊 → ∀𝑓 ∈ (𝑅m 𝑉)∀𝑔 ∈ (𝑅m 𝑉)(((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔))
36 dff13 7167 . 2 ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅) ↔ ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)⟶(𝑅m 𝑅) ∧ ∀𝑓 ∈ (𝑅m 𝑉)∀𝑔 ∈ (𝑅m 𝑉)(((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔)))
377, 35, 36sylanbrc 583 1 (𝑇𝑊 → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3062  wss 3897  cres 5609   Fn wfn 6460  wf 6461  1-1wf1 6462  cfv 6465  (class class class)co 7315  m cmap 8663  pm cpm 8664  ⟨“cs1 14372  mVRcmvar 33528  mRExcmrex 33533  mRSubstcmrsub 33537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-er 8546  df-map 8665  df-pm 8666  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-card 9768  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-2 12109  df-n0 12307  df-z 12393  df-uz 12656  df-fz 13313  df-fzo 13456  df-seq 13795  df-hash 14118  df-word 14290  df-concat 14346  df-s1 14373  df-struct 16918  df-sets 16935  df-slot 16953  df-ndx 16965  df-base 16983  df-ress 17012  df-plusg 17045  df-0g 17222  df-gsum 17223  df-mgm 18396  df-sgrp 18445  df-mnd 18456  df-submnd 18501  df-frmd 18557  df-mrex 33553  df-mrsub 33557
This theorem is referenced by:  mrsubff1o  33582  msubff1  33623
  Copyright terms: Public domain W3C validator