| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mrsubvr.v | . . . 4
⊢ 𝑉 = (mVR‘𝑇) | 
| 2 |  | mrsubvr.r | . . . 4
⊢ 𝑅 = (mREx‘𝑇) | 
| 3 |  | mrsubvr.s | . . . 4
⊢ 𝑆 = (mRSubst‘𝑇) | 
| 4 | 1, 2, 3 | mrsubff 35517 | . . 3
⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) | 
| 5 |  | mapsspm 8916 | . . . 4
⊢ (𝑅 ↑m 𝑉) ⊆ (𝑅 ↑pm 𝑉) | 
| 6 | 5 | a1i 11 | . . 3
⊢ (𝑇 ∈ 𝑊 → (𝑅 ↑m 𝑉) ⊆ (𝑅 ↑pm 𝑉)) | 
| 7 | 4, 6 | fssresd 6775 | . 2
⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)⟶(𝑅 ↑m 𝑅)) | 
| 8 |  | fveq1 6905 | . . . . . 6
⊢ ((𝑆‘𝑓) = (𝑆‘𝑔) → ((𝑆‘𝑓)‘〈“𝑣”〉) = ((𝑆‘𝑔)‘〈“𝑣”〉)) | 
| 9 |  | simplrl 777 | . . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑓 ∈ (𝑅 ↑m 𝑉)) | 
| 10 |  | elmapi 8889 | . . . . . . . . 9
⊢ (𝑓 ∈ (𝑅 ↑m 𝑉) → 𝑓:𝑉⟶𝑅) | 
| 11 | 9, 10 | syl 17 | . . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑓:𝑉⟶𝑅) | 
| 12 |  | ssidd 4007 | . . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑉 ⊆ 𝑉) | 
| 13 |  | simpr 484 | . . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | 
| 14 | 1, 2, 3 | mrsubvr 35516 | . . . . . . . 8
⊢ ((𝑓:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑓)‘〈“𝑣”〉) = (𝑓‘𝑣)) | 
| 15 | 11, 12, 13, 14 | syl3anc 1373 | . . . . . . 7
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑓)‘〈“𝑣”〉) = (𝑓‘𝑣)) | 
| 16 |  | simplrr 778 | . . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑔 ∈ (𝑅 ↑m 𝑉)) | 
| 17 |  | elmapi 8889 | . . . . . . . . 9
⊢ (𝑔 ∈ (𝑅 ↑m 𝑉) → 𝑔:𝑉⟶𝑅) | 
| 18 | 16, 17 | syl 17 | . . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → 𝑔:𝑉⟶𝑅) | 
| 19 | 1, 2, 3 | mrsubvr 35516 | . . . . . . . 8
⊢ ((𝑔:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑔)‘〈“𝑣”〉) = (𝑔‘𝑣)) | 
| 20 | 18, 12, 13, 19 | syl3anc 1373 | . . . . . . 7
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑔)‘〈“𝑣”〉) = (𝑔‘𝑣)) | 
| 21 | 15, 20 | eqeq12d 2753 | . . . . . 6
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → (((𝑆‘𝑓)‘〈“𝑣”〉) = ((𝑆‘𝑔)‘〈“𝑣”〉) ↔ (𝑓‘𝑣) = (𝑔‘𝑣))) | 
| 22 | 8, 21 | imbitrid 244 | . . . . 5
⊢ (((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) → ((𝑆‘𝑓) = (𝑆‘𝑔) → (𝑓‘𝑣) = (𝑔‘𝑣))) | 
| 23 | 22 | ralrimdva 3154 | . . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) → ((𝑆‘𝑓) = (𝑆‘𝑔) → ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) | 
| 24 |  | fvres 6925 | . . . . . 6
⊢ (𝑓 ∈ (𝑅 ↑m 𝑉) → ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = (𝑆‘𝑓)) | 
| 25 |  | fvres 6925 | . . . . . 6
⊢ (𝑔 ∈ (𝑅 ↑m 𝑉) → ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) = (𝑆‘𝑔)) | 
| 26 | 24, 25 | eqeqan12d 2751 | . . . . 5
⊢ ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) ↔ (𝑆‘𝑓) = (𝑆‘𝑔))) | 
| 27 | 26 | adantl 481 | . . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) → (((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) ↔ (𝑆‘𝑓) = (𝑆‘𝑔))) | 
| 28 |  | ffn 6736 | . . . . . . 7
⊢ (𝑓:𝑉⟶𝑅 → 𝑓 Fn 𝑉) | 
| 29 |  | ffn 6736 | . . . . . . 7
⊢ (𝑔:𝑉⟶𝑅 → 𝑔 Fn 𝑉) | 
| 30 |  | eqfnfv 7051 | . . . . . . 7
⊢ ((𝑓 Fn 𝑉 ∧ 𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) | 
| 31 | 28, 29, 30 | syl2an 596 | . . . . . 6
⊢ ((𝑓:𝑉⟶𝑅 ∧ 𝑔:𝑉⟶𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) | 
| 32 | 10, 17, 31 | syl2an 596 | . . . . 5
⊢ ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) | 
| 33 | 32 | adantl 481 | . . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣 ∈ 𝑉 (𝑓‘𝑣) = (𝑔‘𝑣))) | 
| 34 | 23, 27, 33 | 3imtr4d 294 | . . 3
⊢ ((𝑇 ∈ 𝑊 ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) → (((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) → 𝑓 = 𝑔)) | 
| 35 | 34 | ralrimivva 3202 | . 2
⊢ (𝑇 ∈ 𝑊 → ∀𝑓 ∈ (𝑅 ↑m 𝑉)∀𝑔 ∈ (𝑅 ↑m 𝑉)(((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) → 𝑓 = 𝑔)) | 
| 36 |  | dff13 7275 | . 2
⊢ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅) ↔ ((𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)⟶(𝑅 ↑m 𝑅) ∧ ∀𝑓 ∈ (𝑅 ↑m 𝑉)∀𝑔 ∈ (𝑅 ↑m 𝑉)(((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅 ↑m 𝑉))‘𝑔) → 𝑓 = 𝑔))) | 
| 37 | 7, 35, 36 | sylanbrc 583 | 1
⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅)) |