Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meage0 | Structured version Visualization version GIF version |
Description: If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meage0.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meage0.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
Ref | Expression |
---|---|
meage0 | ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11022 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
3 | pnfxr 11029 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
5 | meage0.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
6 | eqid 2738 | . . 3 ⊢ dom 𝑀 = dom 𝑀 | |
7 | meage0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
8 | 5, 6, 7 | meacl 43996 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
9 | iccgelb 13135 | . 2 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑀‘𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝑀‘𝐴)) | |
10 | 2, 4, 8, 9 | syl3anc 1370 | 1 ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 [,]cicc 13082 Meascmea 43987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pnf 11011 df-xr 11013 df-icc 13086 df-mea 43988 |
This theorem is referenced by: meassre 44015 meale0eq0 44016 meaiuninclem 44018 |
Copyright terms: Public domain | W3C validator |