Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meage0 Structured version   Visualization version   GIF version

Theorem meage0 45177
Description: If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meage0.m (𝜑𝑀 ∈ Meas)
meage0.a (𝜑𝐴 ∈ dom 𝑀)
Assertion
Ref Expression
meage0 (𝜑 → 0 ≤ (𝑀𝐴))

Proof of Theorem meage0
StepHypRef Expression
1 0xr 11257 . . 3 0 ∈ ℝ*
21a1i 11 . 2 (𝜑 → 0 ∈ ℝ*)
3 pnfxr 11264 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 (𝜑 → +∞ ∈ ℝ*)
5 meage0.m . . 3 (𝜑𝑀 ∈ Meas)
6 eqid 2732 . . 3 dom 𝑀 = dom 𝑀
7 meage0.a . . 3 (𝜑𝐴 ∈ dom 𝑀)
85, 6, 7meacl 45160 . 2 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
9 iccgelb 13376 . 2 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑀𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝑀𝐴))
102, 4, 8, 9syl3anc 1371 1 (𝜑 → 0 ≤ (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5147  dom cdm 5675  cfv 6540  (class class class)co 7405  0cc0 11106  +∞cpnf 11241  *cxr 11243  cle 11245  [,]cicc 13323  Meascmea 45151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-addrcl 11167  ax-rnegex 11177  ax-cnre 11179
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pnf 11246  df-xr 11248  df-icc 13327  df-mea 45152
This theorem is referenced by:  meassre  45179  meale0eq0  45180  meaiuninclem  45182
  Copyright terms: Public domain W3C validator