| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meage0 | Structured version Visualization version GIF version | ||
| Description: If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meage0.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meage0.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
| Ref | Expression |
|---|---|
| meage0 | ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11309 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 3 | pnfxr 11316 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 5 | meage0.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 6 | eqid 2736 | . . 3 ⊢ dom 𝑀 = dom 𝑀 | |
| 7 | meage0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
| 8 | 5, 6, 7 | meacl 46478 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
| 9 | iccgelb 13444 | . 2 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑀‘𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝑀‘𝐴)) | |
| 10 | 2, 4, 8, 9 | syl3anc 1372 | 1 ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5142 dom cdm 5684 ‘cfv 6560 (class class class)co 7432 0cc0 11156 +∞cpnf 11293 ℝ*cxr 11295 ≤ cle 11297 [,]cicc 13391 Meascmea 46469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-addrcl 11217 ax-rnegex 11227 ax-cnre 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-pnf 11298 df-xr 11300 df-icc 13395 df-mea 46470 |
| This theorem is referenced by: meassre 46497 meale0eq0 46498 meaiuninclem 46500 |
| Copyright terms: Public domain | W3C validator |