| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meage0 | Structured version Visualization version GIF version | ||
| Description: If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meage0.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meage0.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
| Ref | Expression |
|---|---|
| meage0 | ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11239 | . . 3 ⊢ 0 ∈ ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 3 | pnfxr 11246 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 5 | meage0.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 6 | eqid 2730 | . . 3 ⊢ dom 𝑀 = dom 𝑀 | |
| 7 | meage0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
| 8 | 5, 6, 7 | meacl 46429 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
| 9 | iccgelb 13376 | . 2 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑀‘𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝑀‘𝐴)) | |
| 10 | 2, 4, 8, 9 | syl3anc 1373 | 1 ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5115 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 0cc0 11086 +∞cpnf 11223 ℝ*cxr 11225 ≤ cle 11227 [,]cicc 13322 Meascmea 46420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-addrcl 11147 ax-rnegex 11157 ax-cnre 11159 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-pnf 11228 df-xr 11230 df-icc 13326 df-mea 46421 |
| This theorem is referenced by: meassre 46448 meale0eq0 46449 meaiuninclem 46451 |
| Copyright terms: Public domain | W3C validator |