Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c2p1 Structured version   Visualization version   GIF version

Theorem aks6d1c2p1 42120
Description: In the AKS-theorem the subset defined by 𝐸 takes values in the positive integers. (Contributed by metakunt, 7-Jan-2025.)
Hypotheses
Ref Expression
aks6d1c2p1.1 (𝜑𝑁 ∈ ℕ)
aks6d1c2p1.2 (𝜑𝑃 ∈ ℙ)
aks6d1c2p1.3 (𝜑𝑃𝑁)
aks6d1c2p1.4 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
Assertion
Ref Expression
aks6d1c2p1 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑙)   𝐸(𝑘,𝑙)

Proof of Theorem aks6d1c2p1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aks6d1c2p1.2 . . . . . 6 (𝜑𝑃 ∈ ℙ)
2 prmnn 16712 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
43adantr 480 . . . 4 ((𝜑𝑎 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℕ)
5 simpr 484 . . . . 5 ((𝜑𝑎 ∈ (ℕ0 × ℕ0)) → 𝑎 ∈ (ℕ0 × ℕ0))
6 xp1st 8047 . . . . 5 (𝑎 ∈ (ℕ0 × ℕ0) → (1st𝑎) ∈ ℕ0)
75, 6syl 17 . . . 4 ((𝜑𝑎 ∈ (ℕ0 × ℕ0)) → (1st𝑎) ∈ ℕ0)
84, 7nnexpcld 14285 . . 3 ((𝜑𝑎 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st𝑎)) ∈ ℕ)
9 aks6d1c2p1.3 . . . . . 6 (𝜑𝑃𝑁)
10 aks6d1c2p1.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1110, 3jca 511 . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ))
12 nndivdvds 16300 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
1311, 12syl 17 . . . . . 6 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ))
149, 13mpbid 232 . . . . 5 (𝜑 → (𝑁 / 𝑃) ∈ ℕ)
1514adantr 480 . . . 4 ((𝜑𝑎 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ)
16 xp2nd 8048 . . . . 5 (𝑎 ∈ (ℕ0 × ℕ0) → (2nd𝑎) ∈ ℕ0)
175, 16syl 17 . . . 4 ((𝜑𝑎 ∈ (ℕ0 × ℕ0)) → (2nd𝑎) ∈ ℕ0)
1815, 17nnexpcld 14285 . . 3 ((𝜑𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd𝑎)) ∈ ℕ)
198, 18nnmulcld 12320 . 2 ((𝜑𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st𝑎)) · ((𝑁 / 𝑃)↑(2nd𝑎))) ∈ ℕ)
20 aks6d1c2p1.4 . . 3 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
21 vex 3483 . . . . . . . 8 𝑘 ∈ V
22 vex 3483 . . . . . . . 8 𝑙 ∈ V
2321, 22op1std 8025 . . . . . . 7 (𝑎 = ⟨𝑘, 𝑙⟩ → (1st𝑎) = 𝑘)
2423oveq2d 7448 . . . . . 6 (𝑎 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑎)) = (𝑃𝑘))
2521, 22op2ndd 8026 . . . . . . 7 (𝑎 = ⟨𝑘, 𝑙⟩ → (2nd𝑎) = 𝑙)
2625oveq2d 7448 . . . . . 6 (𝑎 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑎)) = ((𝑁 / 𝑃)↑𝑙))
2724, 26oveq12d 7450 . . . . 5 (𝑎 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑎)) · ((𝑁 / 𝑃)↑(2nd𝑎))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
2827mpompt 7548 . . . 4 (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑎)) · ((𝑁 / 𝑃)↑(2nd𝑎)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
2928eqcomi 2745 . . 3 (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑎)) · ((𝑁 / 𝑃)↑(2nd𝑎))))
3020, 29eqtri 2764 . 2 𝐸 = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑎)) · ((𝑁 / 𝑃)↑(2nd𝑎))))
3119, 30fmptd 7133 1 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cop 4631   class class class wbr 5142  cmpt 5224   × cxp 5682  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  1st c1st 8013  2nd c2nd 8014   · cmul 11161   / cdiv 11921  cn 12267  0cn0 12528  cexp 14103  cdvds 16291  cprime 16709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-seq 14044  df-exp 14104  df-dvds 16292  df-prm 16710
This theorem is referenced by:  aks6d1c2p2  42121  aks6d1c2lem4  42129  aks6d1c6lem2  42173  aks6d1c6lem4  42175  aks6d1c6lem5  42179  aks6d1c7lem1  42182
  Copyright terms: Public domain W3C validator