| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c2p1 | Structured version Visualization version GIF version | ||
| Description: In the AKS-theorem the subset defined by 𝐸 takes values in the positive integers. (Contributed by metakunt, 7-Jan-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c2p1.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c2p1.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c2p1.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c2p1.4 | ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| Ref | Expression |
|---|---|
| aks6d1c2p1 | ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c2p1.2 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | prmnn 16585 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℕ) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑎 ∈ (ℕ0 × ℕ0)) | |
| 6 | xp1st 7953 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (1st ‘𝑎) ∈ ℕ0) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (1st ‘𝑎) ∈ ℕ0) |
| 8 | 4, 7 | nnexpcld 14152 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st ‘𝑎)) ∈ ℕ) |
| 9 | aks6d1c2p1.3 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 10 | aks6d1c2p1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 11 | 10, 3 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ)) |
| 12 | nndivdvds 16172 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) |
| 14 | 9, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℕ) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ) |
| 16 | xp2nd 7954 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (2nd ‘𝑎) ∈ ℕ0) | |
| 17 | 5, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (2nd ‘𝑎) ∈ ℕ0) |
| 18 | 15, 17 | nnexpcld 14152 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) ∈ ℕ) |
| 19 | 8, 18 | nnmulcld 12178 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) ∈ ℕ) |
| 20 | aks6d1c2p1.4 | . . 3 ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) | |
| 21 | vex 3440 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
| 22 | vex 3440 | . . . . . . . 8 ⊢ 𝑙 ∈ V | |
| 23 | 21, 22 | op1std 7931 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (1st ‘𝑎) = 𝑘) |
| 24 | 23 | oveq2d 7362 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (𝑃↑(1st ‘𝑎)) = (𝑃↑𝑘)) |
| 25 | 21, 22 | op2ndd 7932 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (2nd ‘𝑎) = 𝑙) |
| 26 | 25 | oveq2d 7362 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) = ((𝑁 / 𝑃)↑𝑙)) |
| 27 | 24, 26 | oveq12d 7364 | . . . . 5 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 28 | 27 | mpompt 7460 | . . . 4 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 29 | 28 | eqcomi 2740 | . . 3 ⊢ (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
| 30 | 20, 29 | eqtri 2754 | . 2 ⊢ 𝐸 = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
| 31 | 19, 30 | fmptd 7047 | 1 ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 · cmul 11011 / cdiv 11774 ℕcn 12125 ℕ0cn0 12381 ↑cexp 13968 ∥ cdvds 16163 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 df-dvds 16164 df-prm 16583 |
| This theorem is referenced by: aks6d1c2p2 42222 aks6d1c2lem4 42230 aks6d1c6lem2 42274 aks6d1c6lem4 42276 aks6d1c6lem5 42280 aks6d1c7lem1 42283 |
| Copyright terms: Public domain | W3C validator |