Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c2p1 | Structured version Visualization version GIF version |
Description: In the AKS-theorem the subset defined by 𝐸 takes values in the positive integers. (Contributed by metakunt, 7-Jan-2025.) |
Ref | Expression |
---|---|
aks6d1c2p1.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
aks6d1c2p1.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
aks6d1c2p1.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
aks6d1c2p1.4 | ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
Ref | Expression |
---|---|
aks6d1c2p1 | ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks6d1c2p1.2 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
2 | prmnn 16453 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℕ) |
5 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑎 ∈ (ℕ0 × ℕ0)) | |
6 | xp1st 7909 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (1st ‘𝑎) ∈ ℕ0) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (1st ‘𝑎) ∈ ℕ0) |
8 | 4, 7 | nnexpcld 14039 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st ‘𝑎)) ∈ ℕ) |
9 | aks6d1c2p1.3 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
10 | aks6d1c2p1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
11 | 10, 3 | jca 512 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ)) |
12 | nndivdvds 16048 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) |
14 | 9, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℕ) |
15 | 14 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ) |
16 | xp2nd 7910 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (2nd ‘𝑎) ∈ ℕ0) | |
17 | 5, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (2nd ‘𝑎) ∈ ℕ0) |
18 | 15, 17 | nnexpcld 14039 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) ∈ ℕ) |
19 | 8, 18 | nnmulcld 12105 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) ∈ ℕ) |
20 | aks6d1c2p1.4 | . . 3 ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) | |
21 | vex 3444 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
22 | vex 3444 | . . . . . . . 8 ⊢ 𝑙 ∈ V | |
23 | 21, 22 | op1std 7887 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (1st ‘𝑎) = 𝑘) |
24 | 23 | oveq2d 7332 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (𝑃↑(1st ‘𝑎)) = (𝑃↑𝑘)) |
25 | 21, 22 | op2ndd 7888 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (2nd ‘𝑎) = 𝑙) |
26 | 25 | oveq2d 7332 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) = ((𝑁 / 𝑃)↑𝑙)) |
27 | 24, 26 | oveq12d 7334 | . . . . 5 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
28 | 27 | mpompt 7429 | . . . 4 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
29 | 28 | eqcomi 2745 | . . 3 ⊢ (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
30 | 20, 29 | eqtri 2764 | . 2 ⊢ 𝐸 = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
31 | 19, 30 | fmptd 7027 | 1 ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4576 class class class wbr 5086 ↦ cmpt 5169 × cxp 5605 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 ∈ cmpo 7318 1st c1st 7875 2nd c2nd 7876 · cmul 10955 / cdiv 11711 ℕcn 12052 ℕ0cn0 12312 ↑cexp 13861 ∥ cdvds 16039 ℙcprime 16450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-n0 12313 df-z 12399 df-uz 12662 df-seq 13801 df-exp 13862 df-dvds 16040 df-prm 16451 |
This theorem is referenced by: aks6d1c2p2 40326 |
Copyright terms: Public domain | W3C validator |