| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c2p1 | Structured version Visualization version GIF version | ||
| Description: In the AKS-theorem the subset defined by 𝐸 takes values in the positive integers. (Contributed by metakunt, 7-Jan-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c2p1.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c2p1.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c2p1.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c2p1.4 | ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| Ref | Expression |
|---|---|
| aks6d1c2p1 | ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c2p1.2 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | prmnn 16644 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℕ) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑎 ∈ (ℕ0 × ℕ0)) | |
| 6 | xp1st 8000 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (1st ‘𝑎) ∈ ℕ0) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (1st ‘𝑎) ∈ ℕ0) |
| 8 | 4, 7 | nnexpcld 14210 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st ‘𝑎)) ∈ ℕ) |
| 9 | aks6d1c2p1.3 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 10 | aks6d1c2p1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 11 | 10, 3 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ)) |
| 12 | nndivdvds 16231 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) |
| 14 | 9, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℕ) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ) |
| 16 | xp2nd 8001 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (2nd ‘𝑎) ∈ ℕ0) | |
| 17 | 5, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (2nd ‘𝑎) ∈ ℕ0) |
| 18 | 15, 17 | nnexpcld 14210 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) ∈ ℕ) |
| 19 | 8, 18 | nnmulcld 12239 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) ∈ ℕ) |
| 20 | aks6d1c2p1.4 | . . 3 ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) | |
| 21 | vex 3451 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
| 22 | vex 3451 | . . . . . . . 8 ⊢ 𝑙 ∈ V | |
| 23 | 21, 22 | op1std 7978 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (1st ‘𝑎) = 𝑘) |
| 24 | 23 | oveq2d 7403 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (𝑃↑(1st ‘𝑎)) = (𝑃↑𝑘)) |
| 25 | 21, 22 | op2ndd 7979 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (2nd ‘𝑎) = 𝑙) |
| 26 | 25 | oveq2d 7403 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) = ((𝑁 / 𝑃)↑𝑙)) |
| 27 | 24, 26 | oveq12d 7405 | . . . . 5 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 28 | 27 | mpompt 7503 | . . . 4 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 29 | 28 | eqcomi 2738 | . . 3 ⊢ (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
| 30 | 20, 29 | eqtri 2752 | . 2 ⊢ 𝐸 = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
| 31 | 19, 30 | fmptd 7086 | 1 ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 · cmul 11073 / cdiv 11835 ℕcn 12186 ℕ0cn0 12442 ↑cexp 14026 ∥ cdvds 16222 ℙcprime 16641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 df-dvds 16223 df-prm 16642 |
| This theorem is referenced by: aks6d1c2p2 42107 aks6d1c2lem4 42115 aks6d1c6lem2 42159 aks6d1c6lem4 42161 aks6d1c6lem5 42165 aks6d1c7lem1 42168 |
| Copyright terms: Public domain | W3C validator |