| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c2p1 | Structured version Visualization version GIF version | ||
| Description: In the AKS-theorem the subset defined by 𝐸 takes values in the positive integers. (Contributed by metakunt, 7-Jan-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c2p1.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c2p1.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c2p1.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c2p1.4 | ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| Ref | Expression |
|---|---|
| aks6d1c2p1 | ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c2p1.2 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | prmnn 16620 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℕ) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑎 ∈ (ℕ0 × ℕ0)) | |
| 6 | xp1st 7979 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (1st ‘𝑎) ∈ ℕ0) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (1st ‘𝑎) ∈ ℕ0) |
| 8 | 4, 7 | nnexpcld 14186 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st ‘𝑎)) ∈ ℕ) |
| 9 | aks6d1c2p1.3 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 10 | aks6d1c2p1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 11 | 10, 3 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ)) |
| 12 | nndivdvds 16207 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) |
| 14 | 9, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℕ) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ) |
| 16 | xp2nd 7980 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (2nd ‘𝑎) ∈ ℕ0) | |
| 17 | 5, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (2nd ‘𝑎) ∈ ℕ0) |
| 18 | 15, 17 | nnexpcld 14186 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) ∈ ℕ) |
| 19 | 8, 18 | nnmulcld 12215 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) ∈ ℕ) |
| 20 | aks6d1c2p1.4 | . . 3 ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) | |
| 21 | vex 3448 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
| 22 | vex 3448 | . . . . . . . 8 ⊢ 𝑙 ∈ V | |
| 23 | 21, 22 | op1std 7957 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (1st ‘𝑎) = 𝑘) |
| 24 | 23 | oveq2d 7385 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (𝑃↑(1st ‘𝑎)) = (𝑃↑𝑘)) |
| 25 | 21, 22 | op2ndd 7958 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (2nd ‘𝑎) = 𝑙) |
| 26 | 25 | oveq2d 7385 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) = ((𝑁 / 𝑃)↑𝑙)) |
| 27 | 24, 26 | oveq12d 7387 | . . . . 5 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 28 | 27 | mpompt 7483 | . . . 4 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 29 | 28 | eqcomi 2738 | . . 3 ⊢ (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
| 30 | 20, 29 | eqtri 2752 | . 2 ⊢ 𝐸 = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
| 31 | 19, 30 | fmptd 7068 | 1 ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 ↦ cmpt 5183 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 · cmul 11049 / cdiv 11811 ℕcn 12162 ℕ0cn0 12418 ↑cexp 14002 ∥ cdvds 16198 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-exp 14003 df-dvds 16199 df-prm 16618 |
| This theorem is referenced by: aks6d1c2p2 42100 aks6d1c2lem4 42108 aks6d1c6lem2 42152 aks6d1c6lem4 42154 aks6d1c6lem5 42158 aks6d1c7lem1 42161 |
| Copyright terms: Public domain | W3C validator |