| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c2p1 | Structured version Visualization version GIF version | ||
| Description: In the AKS-theorem the subset defined by 𝐸 takes values in the positive integers. (Contributed by metakunt, 7-Jan-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c2p1.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c2p1.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c2p1.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c2p1.4 | ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| Ref | Expression |
|---|---|
| aks6d1c2p1 | ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c2p1.2 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | prmnn 16698 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑃 ∈ ℕ) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → 𝑎 ∈ (ℕ0 × ℕ0)) | |
| 6 | xp1st 8025 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (1st ‘𝑎) ∈ ℕ0) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (1st ‘𝑎) ∈ ℕ0) |
| 8 | 4, 7 | nnexpcld 14268 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑃↑(1st ‘𝑎)) ∈ ℕ) |
| 9 | aks6d1c2p1.3 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 10 | aks6d1c2p1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 11 | 10, 3 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ)) |
| 12 | nndivdvds 16286 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℕ)) |
| 14 | 9, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℕ) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (𝑁 / 𝑃) ∈ ℕ) |
| 16 | xp2nd 8026 | . . . . 5 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) → (2nd ‘𝑎) ∈ ℕ0) | |
| 17 | 5, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → (2nd ‘𝑎) ∈ ℕ0) |
| 18 | 15, 17 | nnexpcld 14268 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) ∈ ℕ) |
| 19 | 8, 18 | nnmulcld 12298 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℕ0 × ℕ0)) → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) ∈ ℕ) |
| 20 | aks6d1c2p1.4 | . . 3 ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) | |
| 21 | vex 3468 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
| 22 | vex 3468 | . . . . . . . 8 ⊢ 𝑙 ∈ V | |
| 23 | 21, 22 | op1std 8003 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (1st ‘𝑎) = 𝑘) |
| 24 | 23 | oveq2d 7426 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (𝑃↑(1st ‘𝑎)) = (𝑃↑𝑘)) |
| 25 | 21, 22 | op2ndd 8004 | . . . . . . 7 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → (2nd ‘𝑎) = 𝑙) |
| 26 | 25 | oveq2d 7426 | . . . . . 6 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑁 / 𝑃)↑(2nd ‘𝑎)) = ((𝑁 / 𝑃)↑𝑙)) |
| 27 | 24, 26 | oveq12d 7428 | . . . . 5 ⊢ (𝑎 = 〈𝑘, 𝑙〉 → ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎))) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 28 | 27 | mpompt 7526 | . . . 4 ⊢ (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 29 | 28 | eqcomi 2745 | . . 3 ⊢ (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
| 30 | 20, 29 | eqtri 2759 | . 2 ⊢ 𝐸 = (𝑎 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st ‘𝑎)) · ((𝑁 / 𝑃)↑(2nd ‘𝑎)))) |
| 31 | 19, 30 | fmptd 7109 | 1 ⊢ (𝜑 → 𝐸:(ℕ0 × ℕ0)⟶ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 2nd c2nd 7992 · cmul 11139 / cdiv 11899 ℕcn 12245 ℕ0cn0 12506 ↑cexp 14084 ∥ cdvds 16277 ℙcprime 16695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-exp 14085 df-dvds 16278 df-prm 16696 |
| This theorem is referenced by: aks6d1c2p2 42137 aks6d1c2lem4 42145 aks6d1c6lem2 42189 aks6d1c6lem4 42191 aks6d1c6lem5 42195 aks6d1c7lem1 42198 |
| Copyright terms: Public domain | W3C validator |