MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1st Structured version   Visualization version   GIF version

Theorem cnmpt1st 22925
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
cnmpt1st (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo1st 7924 . . . . . 6 1st :V–onto→V
2 fofn 6746 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 ssv 3960 . . . . 5 (𝑋 × 𝑌) ⊆ V
5 fnssres 6612 . . . . 5 ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
63, 4, 5mp2an 690 . . . 4 (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
7 dffn5 6889 . . . 4 ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)))
86, 7mpbi 229 . . 3 (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))
9 fvres 6849 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st𝑧))
109mpteq2ia 5200 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧))
11 vex 3446 . . . . 5 𝑥 ∈ V
12 vex 3446 . . . . 5 𝑦 ∈ V
1311, 12op1std 7914 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1413mpompt 7455 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧)) = (𝑥𝑋, 𝑦𝑌𝑥)
158, 10, 143eqtri 2769 . 2 (1st ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝑥)
16 cnmpt21.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
17 cnmpt21.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
18 tx1cn 22866 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1916, 17, 18syl2anc 585 . 2 (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
2015, 19eqeltrrid 2843 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3442  wss 3902  cmpt 5180   × cxp 5623  cres 5627   Fn wfn 6479  ontowfo 6482  cfv 6484  (class class class)co 7342  cmpo 7344  1st c1st 7902  TopOnctopon 22165   Cn ccn 22481   ×t ctx 22817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-fo 6490  df-fv 6492  df-ov 7345  df-oprab 7346  df-mpo 7347  df-1st 7904  df-2nd 7905  df-map 8693  df-topgen 17252  df-top 22149  df-topon 22166  df-bases 22202  df-cn 22484  df-tx 22819
This theorem is referenced by:  cnmptcom  22935  xkofvcn  22941  cnmptk2  22943  txhmeo  23060  txswaphmeo  23062  ptunhmeo  23065  xkohmeo  23072  tgpsubcn  23347  istgp2  23348  oppgtmd  23354  prdstmdd  23381  dvrcn  23441  divcn  24137  cnrehmeo  24222  htpycom  24245  htpyid  24246  htpyco1  24247  htpycc  24249  reparphti  24266  pcocn  24286  pcohtpylem  24288  pcopt  24291  pcopt2  24292  pcoass  24293  pcorevlem  24295  cxpcn  26004  vmcn  29349  dipcn  29370  mndpluscn  32172  cvxsconn  33502  cvmlift2lem12  33573
  Copyright terms: Public domain W3C validator