| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1st | Structured version Visualization version GIF version | ||
| Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| Ref | Expression |
|---|---|
| cnmpt1st | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo1st 8013 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 2 | fofn 6797 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
| 4 | ssv 3988 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
| 5 | fnssres 6666 | . . . . 5 ⊢ ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
| 7 | dffn5 6942 | . . . 4 ⊢ ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))) | |
| 8 | 6, 7 | mpbi 230 | . . 3 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) |
| 9 | fvres 6900 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st ‘𝑧)) | |
| 10 | 9 | mpteq2ia 5221 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) |
| 11 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | vex 3468 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op1std 8003 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 14 | 13 | mpompt 7526 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
| 15 | 8, 10, 14 | 3eqtri 2763 | . 2 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
| 16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 18 | tx1cn 23552 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | |
| 19 | 16, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| 20 | 15, 19 | eqeltrrid 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ↦ cmpt 5206 × cxp 5657 ↾ cres 5661 Fn wfn 6531 –onto→wfo 6534 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 TopOnctopon 22853 Cn ccn 23167 ×t ctx 23503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-cn 23170 df-tx 23505 |
| This theorem is referenced by: cnmptcom 23621 xkofvcn 23627 cnmptk2 23629 txhmeo 23746 txswaphmeo 23748 ptunhmeo 23751 xkohmeo 23758 tgpsubcn 24033 istgp2 24034 oppgtmd 24040 prdstmdd 24067 dvrcn 24127 divcnOLD 24813 divcn 24815 cnrehmeo 24907 cnrehmeoOLD 24908 htpycom 24931 htpyid 24932 htpyco1 24933 htpycc 24935 reparphti 24952 reparphtiOLD 24953 pcocn 24973 pcohtpylem 24975 pcopt 24978 pcopt2 24979 pcoass 24980 pcorevlem 24982 cxpcn 26711 cxpcnOLD 26712 vmcn 30685 dipcn 30706 mndpluscn 33962 cvxsconn 35270 cvmlift2lem12 35341 |
| Copyright terms: Public domain | W3C validator |