MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1st Structured version   Visualization version   GIF version

Theorem cnmpt1st 23572
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
cnmpt1st (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo1st 7951 . . . . . 6 1st :V–onto→V
2 fofn 6742 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 ssv 3962 . . . . 5 (𝑋 × 𝑌) ⊆ V
5 fnssres 6609 . . . . 5 ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
63, 4, 5mp2an 692 . . . 4 (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
7 dffn5 6885 . . . 4 ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)))
86, 7mpbi 230 . . 3 (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))
9 fvres 6845 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st𝑧))
109mpteq2ia 5190 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧))
11 vex 3442 . . . . 5 𝑥 ∈ V
12 vex 3442 . . . . 5 𝑦 ∈ V
1311, 12op1std 7941 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1413mpompt 7467 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧)) = (𝑥𝑋, 𝑦𝑌𝑥)
158, 10, 143eqtri 2756 . 2 (1st ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝑥)
16 cnmpt21.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
17 cnmpt21.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
18 tx1cn 23513 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1916, 17, 18syl2anc 584 . 2 (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
2015, 19eqeltrrid 2833 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  cmpt 5176   × cxp 5621  cres 5625   Fn wfn 6481  ontowfo 6484  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  TopOnctopon 22814   Cn ccn 23128   ×t ctx 23464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-topgen 17366  df-top 22798  df-topon 22815  df-bases 22850  df-cn 23131  df-tx 23466
This theorem is referenced by:  cnmptcom  23582  xkofvcn  23588  cnmptk2  23590  txhmeo  23707  txswaphmeo  23709  ptunhmeo  23712  xkohmeo  23719  tgpsubcn  23994  istgp2  23995  oppgtmd  24001  prdstmdd  24028  dvrcn  24088  divcnOLD  24774  divcn  24776  cnrehmeo  24868  cnrehmeoOLD  24869  htpycom  24892  htpyid  24893  htpyco1  24894  htpycc  24896  reparphti  24913  reparphtiOLD  24914  pcocn  24934  pcohtpylem  24936  pcopt  24939  pcopt2  24940  pcoass  24941  pcorevlem  24943  cxpcn  26671  cxpcnOLD  26672  vmcn  30662  dipcn  30683  mndpluscn  33912  cvxsconn  35235  cvmlift2lem12  35306
  Copyright terms: Public domain W3C validator