MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1st Structured version   Visualization version   GIF version

Theorem cnmpt1st 23578
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
cnmpt1st (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fo1st 7936 . . . . . 6 1st :V–onto→V
2 fofn 6732 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 ssv 3954 . . . . 5 (𝑋 × 𝑌) ⊆ V
5 fnssres 6599 . . . . 5 ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
63, 4, 5mp2an 692 . . . 4 (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
7 dffn5 6875 . . . 4 ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)))
86, 7mpbi 230 . . 3 (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))
9 fvres 6836 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st𝑧))
109mpteq2ia 5181 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧))
11 vex 3440 . . . . 5 𝑥 ∈ V
12 vex 3440 . . . . 5 𝑦 ∈ V
1311, 12op1std 7926 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1413mpompt 7455 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st𝑧)) = (𝑥𝑋, 𝑦𝑌𝑥)
158, 10, 143eqtri 2758 . 2 (1st ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝑥)
16 cnmpt21.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
17 cnmpt21.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
18 tx1cn 23519 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1916, 17, 18syl2anc 584 . 2 (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
2015, 19eqeltrrid 2836 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cmpt 5167   × cxp 5609  cres 5613   Fn wfn 6471  ontowfo 6474  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  TopOnctopon 22820   Cn ccn 23134   ×t ctx 23470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-topgen 17342  df-top 22804  df-topon 22821  df-bases 22856  df-cn 23137  df-tx 23472
This theorem is referenced by:  cnmptcom  23588  xkofvcn  23594  cnmptk2  23596  txhmeo  23713  txswaphmeo  23715  ptunhmeo  23718  xkohmeo  23725  tgpsubcn  24000  istgp2  24001  oppgtmd  24007  prdstmdd  24034  dvrcn  24094  divcnOLD  24779  divcn  24781  cnrehmeo  24873  cnrehmeoOLD  24874  htpycom  24897  htpyid  24898  htpyco1  24899  htpycc  24901  reparphti  24918  reparphtiOLD  24919  pcocn  24939  pcohtpylem  24941  pcopt  24944  pcopt2  24945  pcoass  24946  pcorevlem  24948  cxpcn  26676  cxpcnOLD  26677  vmcn  30671  dipcn  30692  mndpluscn  33931  cvxsconn  35279  cvmlift2lem12  35350
  Copyright terms: Public domain W3C validator