![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1st | Structured version Visualization version GIF version |
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt21.k | β’ (π β πΎ β (TopOnβπ)) |
Ref | Expression |
---|---|
cnmpt1st | β’ (π β (π₯ β π, π¦ β π β¦ π₯) β ((π½ Γt πΎ) Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7997 | . . . . . 6 β’ 1st :VβontoβV | |
2 | fofn 6807 | . . . . . 6 β’ (1st :VβontoβV β 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 β’ 1st Fn V |
4 | ssv 4006 | . . . . 5 β’ (π Γ π) β V | |
5 | fnssres 6673 | . . . . 5 β’ ((1st Fn V β§ (π Γ π) β V) β (1st βΎ (π Γ π)) Fn (π Γ π)) | |
6 | 3, 4, 5 | mp2an 690 | . . . 4 β’ (1st βΎ (π Γ π)) Fn (π Γ π) |
7 | dffn5 6950 | . . . 4 β’ ((1st βΎ (π Γ π)) Fn (π Γ π) β (1st βΎ (π Γ π)) = (π§ β (π Γ π) β¦ ((1st βΎ (π Γ π))βπ§))) | |
8 | 6, 7 | mpbi 229 | . . 3 β’ (1st βΎ (π Γ π)) = (π§ β (π Γ π) β¦ ((1st βΎ (π Γ π))βπ§)) |
9 | fvres 6910 | . . . 4 β’ (π§ β (π Γ π) β ((1st βΎ (π Γ π))βπ§) = (1st βπ§)) | |
10 | 9 | mpteq2ia 5251 | . . 3 β’ (π§ β (π Γ π) β¦ ((1st βΎ (π Γ π))βπ§)) = (π§ β (π Γ π) β¦ (1st βπ§)) |
11 | vex 3478 | . . . . 5 β’ π₯ β V | |
12 | vex 3478 | . . . . 5 β’ π¦ β V | |
13 | 11, 12 | op1std 7987 | . . . 4 β’ (π§ = β¨π₯, π¦β© β (1st βπ§) = π₯) |
14 | 13 | mpompt 7524 | . . 3 β’ (π§ β (π Γ π) β¦ (1st βπ§)) = (π₯ β π, π¦ β π β¦ π₯) |
15 | 8, 10, 14 | 3eqtri 2764 | . 2 β’ (1st βΎ (π Γ π)) = (π₯ β π, π¦ β π β¦ π₯) |
16 | cnmpt21.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
17 | cnmpt21.k | . . 3 β’ (π β πΎ β (TopOnβπ)) | |
18 | tx1cn 23333 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (1st βΎ (π Γ π)) β ((π½ Γt πΎ) Cn π½)) | |
19 | 16, 17, 18 | syl2anc 584 | . 2 β’ (π β (1st βΎ (π Γ π)) β ((π½ Γt πΎ) Cn π½)) |
20 | 15, 19 | eqeltrrid 2838 | 1 β’ (π β (π₯ β π, π¦ β π β¦ π₯) β ((π½ Γt πΎ) Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 β¦ cmpt 5231 Γ cxp 5674 βΎ cres 5678 Fn wfn 6538 βontoβwfo 6541 βcfv 6543 (class class class)co 7411 β cmpo 7413 1st c1st 7975 TopOnctopon 22632 Cn ccn 22948 Γt ctx 23284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 df-topgen 17393 df-top 22616 df-topon 22633 df-bases 22669 df-cn 22951 df-tx 23286 |
This theorem is referenced by: cnmptcom 23402 xkofvcn 23408 cnmptk2 23410 txhmeo 23527 txswaphmeo 23529 ptunhmeo 23532 xkohmeo 23539 tgpsubcn 23814 istgp2 23815 oppgtmd 23821 prdstmdd 23848 dvrcn 23908 divcnOLD 24604 divcn 24606 cnrehmeo 24693 htpycom 24716 htpyid 24717 htpyco1 24718 htpycc 24720 reparphti 24737 pcocn 24757 pcohtpylem 24759 pcopt 24762 pcopt2 24763 pcoass 24764 pcorevlem 24766 cxpcn 26477 vmcn 30207 dipcn 30228 mndpluscn 33192 cvxsconn 34520 cvmlift2lem12 34591 gg-cnrehmeo 35457 gg-reparphti 35458 gg-cxpcn 35470 |
Copyright terms: Public domain | W3C validator |