| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1st | Structured version Visualization version GIF version | ||
| Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| Ref | Expression |
|---|---|
| cnmpt1st | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo1st 7950 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 2 | fofn 6745 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
| 4 | ssv 3955 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
| 5 | fnssres 6612 | . . . . 5 ⊢ ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
| 7 | dffn5 6889 | . . . 4 ⊢ ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))) | |
| 8 | 6, 7 | mpbi 230 | . . 3 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) |
| 9 | fvres 6850 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st ‘𝑧)) | |
| 10 | 9 | mpteq2ia 5190 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) |
| 11 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op1std 7940 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 14 | 13 | mpompt 7469 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
| 15 | 8, 10, 14 | 3eqtri 2760 | . 2 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
| 16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 18 | tx1cn 23544 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | |
| 19 | 16, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| 20 | 15, 19 | eqeltrrid 2838 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ↦ cmpt 5176 × cxp 5619 ↾ cres 5623 Fn wfn 6484 –onto→wfo 6487 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1st c1st 7928 TopOnctopon 22845 Cn ccn 23159 ×t ctx 23495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-topgen 17354 df-top 22829 df-topon 22846 df-bases 22881 df-cn 23162 df-tx 23497 |
| This theorem is referenced by: cnmptcom 23613 xkofvcn 23619 cnmptk2 23621 txhmeo 23738 txswaphmeo 23740 ptunhmeo 23743 xkohmeo 23750 tgpsubcn 24025 istgp2 24026 oppgtmd 24032 prdstmdd 24059 dvrcn 24119 divcnOLD 24804 divcn 24806 cnrehmeo 24898 cnrehmeoOLD 24899 htpycom 24922 htpyid 24923 htpyco1 24924 htpycc 24926 reparphti 24943 reparphtiOLD 24944 pcocn 24964 pcohtpylem 24966 pcopt 24969 pcopt2 24970 pcoass 24971 pcorevlem 24973 cxpcn 26701 cxpcnOLD 26702 vmcn 30700 dipcn 30721 mndpluscn 34011 cvxsconn 35359 cvmlift2lem12 35430 |
| Copyright terms: Public domain | W3C validator |