![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1st | Structured version Visualization version GIF version |
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | β’ (π β π½ β (TopOnβπ)) |
cnmpt21.k | β’ (π β πΎ β (TopOnβπ)) |
Ref | Expression |
---|---|
cnmpt1st | β’ (π β (π₯ β π, π¦ β π β¦ π₯) β ((π½ Γt πΎ) Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7997 | . . . . . 6 β’ 1st :VβontoβV | |
2 | fofn 6806 | . . . . . 6 β’ (1st :VβontoβV β 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 β’ 1st Fn V |
4 | ssv 4005 | . . . . 5 β’ (π Γ π) β V | |
5 | fnssres 6672 | . . . . 5 β’ ((1st Fn V β§ (π Γ π) β V) β (1st βΎ (π Γ π)) Fn (π Γ π)) | |
6 | 3, 4, 5 | mp2an 688 | . . . 4 β’ (1st βΎ (π Γ π)) Fn (π Γ π) |
7 | dffn5 6949 | . . . 4 β’ ((1st βΎ (π Γ π)) Fn (π Γ π) β (1st βΎ (π Γ π)) = (π§ β (π Γ π) β¦ ((1st βΎ (π Γ π))βπ§))) | |
8 | 6, 7 | mpbi 229 | . . 3 β’ (1st βΎ (π Γ π)) = (π§ β (π Γ π) β¦ ((1st βΎ (π Γ π))βπ§)) |
9 | fvres 6909 | . . . 4 β’ (π§ β (π Γ π) β ((1st βΎ (π Γ π))βπ§) = (1st βπ§)) | |
10 | 9 | mpteq2ia 5250 | . . 3 β’ (π§ β (π Γ π) β¦ ((1st βΎ (π Γ π))βπ§)) = (π§ β (π Γ π) β¦ (1st βπ§)) |
11 | vex 3476 | . . . . 5 β’ π₯ β V | |
12 | vex 3476 | . . . . 5 β’ π¦ β V | |
13 | 11, 12 | op1std 7987 | . . . 4 β’ (π§ = β¨π₯, π¦β© β (1st βπ§) = π₯) |
14 | 13 | mpompt 7524 | . . 3 β’ (π§ β (π Γ π) β¦ (1st βπ§)) = (π₯ β π, π¦ β π β¦ π₯) |
15 | 8, 10, 14 | 3eqtri 2762 | . 2 β’ (1st βΎ (π Γ π)) = (π₯ β π, π¦ β π β¦ π₯) |
16 | cnmpt21.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
17 | cnmpt21.k | . . 3 β’ (π β πΎ β (TopOnβπ)) | |
18 | tx1cn 23333 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (1st βΎ (π Γ π)) β ((π½ Γt πΎ) Cn π½)) | |
19 | 16, 17, 18 | syl2anc 582 | . 2 β’ (π β (1st βΎ (π Γ π)) β ((π½ Γt πΎ) Cn π½)) |
20 | 15, 19 | eqeltrrid 2836 | 1 β’ (π β (π₯ β π, π¦ β π β¦ π₯) β ((π½ Γt πΎ) Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 Vcvv 3472 β wss 3947 β¦ cmpt 5230 Γ cxp 5673 βΎ cres 5677 Fn wfn 6537 βontoβwfo 6540 βcfv 6542 (class class class)co 7411 β cmpo 7413 1st c1st 7975 TopOnctopon 22632 Cn ccn 22948 Γt ctx 23284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 df-topgen 17393 df-top 22616 df-topon 22633 df-bases 22669 df-cn 22951 df-tx 23286 |
This theorem is referenced by: cnmptcom 23402 xkofvcn 23408 cnmptk2 23410 txhmeo 23527 txswaphmeo 23529 ptunhmeo 23532 xkohmeo 23539 tgpsubcn 23814 istgp2 23815 oppgtmd 23821 prdstmdd 23848 dvrcn 23908 divcnOLD 24604 divcn 24606 cnrehmeo 24698 cnrehmeoOLD 24699 htpycom 24722 htpyid 24723 htpyco1 24724 htpycc 24726 reparphti 24743 reparphtiOLD 24744 pcocn 24764 pcohtpylem 24766 pcopt 24769 pcopt2 24770 pcoass 24771 pcorevlem 24773 cxpcn 26489 vmcn 30219 dipcn 30240 mndpluscn 33204 cvxsconn 34532 cvmlift2lem12 34603 gg-cxpcn 35470 |
Copyright terms: Public domain | W3C validator |