![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1st | Structured version Visualization version GIF version |
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
Ref | Expression |
---|---|
cnmpt1st | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7946 | . . . . . 6 ⊢ 1st :V–onto→V | |
2 | fofn 6763 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
4 | ssv 3971 | . . . . 5 ⊢ (𝑋 × 𝑌) ⊆ V | |
5 | fnssres 6629 | . . . . 5 ⊢ ((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | |
6 | 3, 4, 5 | mp2an 690 | . . . 4 ⊢ (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
7 | dffn5 6906 | . . . 4 ⊢ ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ↔ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧))) | |
8 | 6, 7 | mpbi 229 | . . 3 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) |
9 | fvres 6866 | . . . 4 ⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st ‘𝑧)) | |
10 | 9 | mpteq2ia 5213 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((1st ↾ (𝑋 × 𝑌))‘𝑧)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) |
11 | vex 3450 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | vex 3450 | . . . . 5 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | op1std 7936 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
14 | 13 | mpompt 7475 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
15 | 8, 10, 14 | 3eqtri 2763 | . 2 ⊢ (1st ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
16 | cnmpt21.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
17 | cnmpt21.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
18 | tx1cn 22997 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | |
19 | 16, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
20 | 15, 19 | eqeltrrid 2837 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3446 ⊆ wss 3913 ↦ cmpt 5193 × cxp 5636 ↾ cres 5640 Fn wfn 6496 –onto→wfo 6499 ‘cfv 6501 (class class class)co 7362 ∈ cmpo 7364 1st c1st 7924 TopOnctopon 22296 Cn ccn 22612 ×t ctx 22948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-fo 6507 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 df-map 8774 df-topgen 17339 df-top 22280 df-topon 22297 df-bases 22333 df-cn 22615 df-tx 22950 |
This theorem is referenced by: cnmptcom 23066 xkofvcn 23072 cnmptk2 23074 txhmeo 23191 txswaphmeo 23193 ptunhmeo 23196 xkohmeo 23203 tgpsubcn 23478 istgp2 23479 oppgtmd 23485 prdstmdd 23512 dvrcn 23572 divcn 24268 cnrehmeo 24353 htpycom 24376 htpyid 24377 htpyco1 24378 htpycc 24380 reparphti 24397 pcocn 24417 pcohtpylem 24419 pcopt 24422 pcopt2 24423 pcoass 24424 pcorevlem 24426 cxpcn 26135 vmcn 29704 dipcn 29725 mndpluscn 32596 cvxsconn 33924 cvmlift2lem12 33995 |
Copyright terms: Public domain | W3C validator |