MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulid1 Structured version   Visualization version   GIF version

Theorem mulid1 10973
Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mulid1 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)

Proof of Theorem mulid1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10972 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 recn 10961 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 ax-icn 10930 . . . . . . 7 i ∈ ℂ
4 recn 10961 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 mulcl 10955 . . . . . . 7 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
63, 4, 5sylancr 587 . . . . . 6 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
7 ax-1cn 10929 . . . . . . 7 1 ∈ ℂ
8 adddir 10966 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
97, 8mp3an3 1449 . . . . . 6 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
102, 6, 9syl2an 596 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
11 ax-1rid 10941 . . . . . 6 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
12 mulass 10959 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
133, 7, 12mp3an13 1451 . . . . . . . 8 (𝑦 ∈ ℂ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
144, 13syl 17 . . . . . . 7 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
15 ax-1rid 10941 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
1615oveq2d 7291 . . . . . . 7 (𝑦 ∈ ℝ → (i · (𝑦 · 1)) = (i · 𝑦))
1714, 16eqtrd 2778 . . . . . 6 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · 𝑦))
1811, 17oveqan12d 7294 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + ((i · 𝑦) · 1)) = (𝑥 + (i · 𝑦)))
1910, 18eqtrd 2778 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦)))
20 oveq1 7282 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = ((𝑥 + (i · 𝑦)) · 1))
21 id 22 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
2220, 21eqeq12d 2754 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 · 1) = 𝐴 ↔ ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦))))
2319, 22syl5ibrcom 246 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴))
2423rexlimivv 3221 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴)
251, 24syl 17 1 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  (class class class)co 7275  cc 10869  cr 10870  1c1 10872  ici 10873   + caddc 10874   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-mulcom 10935  ax-mulass 10937  ax-distr 10938  ax-1rid 10941  ax-cnre 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  mulid2  10974  mulid1i  10979  mulid1d  10992  muleqadd  11619  divdiv1  11686  conjmul  11692  expmul  13828  binom21  13934  binom2sub1  13936  sq01  13940  bernneq  13944  hashiun  15534  fprodcvg  15640  prodmolem2a  15644  efexp  15810  cncrng  20619  cnfld1  20623  0dgr  25406  ecxp  25828  dvcxp1  25893  dvcncxp1  25896  efrlim  26119  lgsdilem2  26481  axcontlem7  27338  ipasslem2  29194  addltmulALT  30808  0dp2dp  31183  zrhnm  31919  2even  45491
  Copyright terms: Public domain W3C validator