![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulid1 | Structured version Visualization version GIF version |
Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mulid1 | ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 10438 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | recn 10427 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
3 | ax-icn 10396 | . . . . . . 7 ⊢ i ∈ ℂ | |
4 | recn 10427 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
5 | mulcl 10421 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 578 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ) |
7 | ax-1cn 10395 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | adddir 10432 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) | |
9 | 7, 8 | mp3an3 1429 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) |
10 | 2, 6, 9 | syl2an 586 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) |
11 | ax-1rid 10407 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥) | |
12 | mulass 10425 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) | |
13 | 3, 7, 12 | mp3an13 1431 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) |
14 | 4, 13 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) |
15 | ax-1rid 10407 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦) | |
16 | 15 | oveq2d 6994 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (i · (𝑦 · 1)) = (i · 𝑦)) |
17 | 14, 16 | eqtrd 2814 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · 𝑦)) |
18 | 11, 17 | oveqan12d 6997 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + ((i · 𝑦) · 1)) = (𝑥 + (i · 𝑦))) |
19 | 10, 18 | eqtrd 2814 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦))) |
20 | oveq1 6985 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = ((𝑥 + (i · 𝑦)) · 1)) | |
21 | id 22 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
22 | 20, 21 | eqeq12d 2793 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 · 1) = 𝐴 ↔ ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦)))) |
23 | 19, 22 | syl5ibrcom 239 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴)) |
24 | 23 | rexlimivv 3237 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴) |
25 | 1, 24 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃wrex 3089 (class class class)co 6978 ℂcc 10335 ℝcr 10336 1c1 10338 ici 10339 + caddc 10340 · cmul 10342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-mulcl 10399 ax-mulcom 10401 ax-mulass 10403 ax-distr 10404 ax-1rid 10407 ax-cnre 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-iota 6154 df-fv 6198 df-ov 6981 |
This theorem is referenced by: mulid2 10440 mulid1i 10446 mulid1d 10459 muleqadd 11087 divdiv1 11154 conjmul 11160 nnmulclOLD 11467 expmul 13292 binom21 13398 binom2sub1 13400 sq01 13404 bernneq 13408 hashiun 15040 fprodcvg 15147 prodmolem2a 15151 efexp 15317 cncrng 20271 cnfld1 20275 0dgr 24541 ecxp 24960 dvcxp1 25025 dvcncxp1 25028 efrlim 25252 lgsdilem2 25614 axcontlem7 26462 ipasslem2 28389 addltmulALT 30007 0dp2dp 30334 zrhnm 30854 2even 43569 |
Copyright terms: Public domain | W3C validator |