MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulid1 Structured version   Visualization version   GIF version

Theorem mulid1 10439
Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mulid1 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)

Proof of Theorem mulid1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10438 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 recn 10427 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 ax-icn 10396 . . . . . . 7 i ∈ ℂ
4 recn 10427 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 mulcl 10421 . . . . . . 7 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
63, 4, 5sylancr 578 . . . . . 6 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
7 ax-1cn 10395 . . . . . . 7 1 ∈ ℂ
8 adddir 10432 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
97, 8mp3an3 1429 . . . . . 6 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
102, 6, 9syl2an 586 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
11 ax-1rid 10407 . . . . . 6 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
12 mulass 10425 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
133, 7, 12mp3an13 1431 . . . . . . . 8 (𝑦 ∈ ℂ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
144, 13syl 17 . . . . . . 7 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
15 ax-1rid 10407 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
1615oveq2d 6994 . . . . . . 7 (𝑦 ∈ ℝ → (i · (𝑦 · 1)) = (i · 𝑦))
1714, 16eqtrd 2814 . . . . . 6 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · 𝑦))
1811, 17oveqan12d 6997 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + ((i · 𝑦) · 1)) = (𝑥 + (i · 𝑦)))
1910, 18eqtrd 2814 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦)))
20 oveq1 6985 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = ((𝑥 + (i · 𝑦)) · 1))
21 id 22 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
2220, 21eqeq12d 2793 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 · 1) = 𝐴 ↔ ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦))))
2319, 22syl5ibrcom 239 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴))
2423rexlimivv 3237 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴)
251, 24syl 17 1 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wrex 3089  (class class class)co 6978  cc 10335  cr 10336  1c1 10338  ici 10339   + caddc 10340   · cmul 10342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-mulcl 10399  ax-mulcom 10401  ax-mulass 10403  ax-distr 10404  ax-1rid 10407  ax-cnre 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-iota 6154  df-fv 6198  df-ov 6981
This theorem is referenced by:  mulid2  10440  mulid1i  10446  mulid1d  10459  muleqadd  11087  divdiv1  11154  conjmul  11160  nnmulclOLD  11467  expmul  13292  binom21  13398  binom2sub1  13400  sq01  13404  bernneq  13408  hashiun  15040  fprodcvg  15147  prodmolem2a  15151  efexp  15317  cncrng  20271  cnfld1  20275  0dgr  24541  ecxp  24960  dvcxp1  25025  dvcncxp1  25028  efrlim  25252  lgsdilem2  25614  axcontlem7  26462  ipasslem2  28389  addltmulALT  30007  0dp2dp  30334  zrhnm  30854  2even  43569
  Copyright terms: Public domain W3C validator