MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulid1 Structured version   Visualization version   GIF version

Theorem mulid1 10242
Description: 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mulid1 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)

Proof of Theorem mulid1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10241 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 recn 10231 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 ax-icn 10200 . . . . . . 7 i ∈ ℂ
4 recn 10231 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 mulcl 10225 . . . . . . 7 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
63, 4, 5sylancr 575 . . . . . 6 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
7 ax-1cn 10199 . . . . . . 7 1 ∈ ℂ
8 adddir 10236 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
97, 8mp3an3 1561 . . . . . 6 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
102, 6, 9syl2an 583 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
11 ax-1rid 10211 . . . . . 6 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
12 mulass 10229 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
133, 7, 12mp3an13 1563 . . . . . . . 8 (𝑦 ∈ ℂ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
144, 13syl 17 . . . . . . 7 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
15 ax-1rid 10211 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
1615oveq2d 6811 . . . . . . 7 (𝑦 ∈ ℝ → (i · (𝑦 · 1)) = (i · 𝑦))
1714, 16eqtrd 2805 . . . . . 6 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · 𝑦))
1811, 17oveqan12d 6814 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + ((i · 𝑦) · 1)) = (𝑥 + (i · 𝑦)))
1910, 18eqtrd 2805 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦)))
20 oveq1 6802 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = ((𝑥 + (i · 𝑦)) · 1))
21 id 22 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
2220, 21eqeq12d 2786 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 · 1) = 𝐴 ↔ ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦))))
2319, 22syl5ibrcom 237 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴))
2423rexlimivv 3184 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴)
251, 24syl 17 1 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wrex 3062  (class class class)co 6795  cc 10139  cr 10140  1c1 10142  ici 10143   + caddc 10144   · cmul 10146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-mulcl 10203  ax-mulcom 10205  ax-mulass 10207  ax-distr 10208  ax-1rid 10211  ax-cnre 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-iota 5993  df-fv 6038  df-ov 6798
This theorem is referenced by:  mulid2  10243  mulid1i  10247  mulid1d  10262  muleqadd  10876  divdiv1  10941  conjmul  10947  nnmulcl  11248  expmul  13111  binom21  13186  binom2sub1  13188  sq01  13192  bernneq  13196  hashiun  14760  fprodcvg  14866  prodmolem2a  14870  efexp  15036  cncrng  19981  cnfld1  19985  0dgr  24220  ecxp  24639  dvcxp1  24701  dvcncxp1  24704  efrlim  24916  lgsdilem2  25278  axcontlem7  26070  ipasslem2  28026  addltmulALT  29644  0dp2dp  29956  zrhnm  30352  2even  42458
  Copyright terms: Public domain W3C validator