![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > binom2sub1 | Structured version Visualization version GIF version |
Description: Special case of binom2sub 13396 where 𝐵 = 1. (Contributed by AV, 2-Aug-2021.) |
Ref | Expression |
---|---|
binom2sub1 | ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10434 | . . 3 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
2 | binom2sub 13396 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · (𝐴 · 1))) + (1↑2))) | |
3 | 1, 2 | mpdan 674 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · (𝐴 · 1))) + (1↑2))) |
4 | mulid1 10437 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 4 | oveq2d 6992 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · (𝐴 · 1)) = (2 · 𝐴)) |
6 | 5 | oveq2d 6992 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) − (2 · (𝐴 · 1))) = ((𝐴↑2) − (2 · 𝐴))) |
7 | sq1 13373 | . . . 4 ⊢ (1↑2) = 1 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → (1↑2) = 1) |
9 | 6, 8 | oveq12d 6994 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐴↑2) − (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
10 | 3, 9 | eqtrd 2814 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 (class class class)co 6976 ℂcc 10333 1c1 10336 + caddc 10338 · cmul 10340 − cmin 10670 2c2 11495 ↑cexp 13244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-n0 11708 df-z 11794 df-uz 12059 df-seq 13185 df-exp 13245 |
This theorem is referenced by: arisum2 15076 loglesqrt 25040 rmspecsqrtnq 38905 fmtnorec3 43084 fmtnorec4 43085 |
Copyright terms: Public domain | W3C validator |