Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulid1i | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid1i | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid1 11046 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7315 ℂcc 10942 1c1 10945 · cmul 10949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-mulcl 11006 ax-mulcom 11008 ax-mulass 11010 ax-distr 11011 ax-1rid 11014 ax-cnre 11017 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6417 df-fv 6473 df-ov 7318 |
This theorem is referenced by: addid1 11228 0lt1 11570 muleqadd 11692 1t1e1 12208 2t1e2 12209 3t1e3 12211 halfpm6th 12267 9p1e10 12512 numltc 12536 numsucc 12550 dec10p 12553 numadd 12557 numaddc 12558 11multnc 12578 4t3lem 12607 5t2e10 12610 9t11e99 12640 nn0opthlem1 14055 faclbnd4lem1 14080 rei 14939 imi 14940 cji 14942 sqrtm1 15059 0.999... 15665 efival 15933 ef01bndlem 15965 3lcm2e6 16506 decsplit0b 16851 2exp8 16860 37prm 16892 43prm 16893 83prm 16894 139prm 16895 163prm 16896 317prm 16897 1259lem1 16902 1259lem2 16903 1259lem3 16904 1259lem4 16905 1259lem5 16906 2503lem1 16908 2503lem2 16909 2503prm 16911 4001lem1 16912 4001lem2 16913 4001lem3 16914 cnmsgnsubg 20854 mdetralt 21829 dveflem 25215 dvsincos 25217 efhalfpi 25700 pige3ALT 25748 cosne0 25757 efif1olem4 25773 logf1o2 25877 asin1 26116 dvatan 26157 log2ublem3 26170 log2ub 26171 birthday 26176 basellem9 26310 ppiub 26424 chtub 26432 bposlem8 26511 lgsdir2 26550 mulog2sumlem2 26755 pntlemb 26817 avril1 28936 ipidsq 29181 nmopadjlem 30560 nmopcoadji 30572 unierri 30575 sgnmul 32615 signswch 32646 itgexpif 32692 reprlt 32705 breprexp 32719 hgt750lem 32737 hgt750lem2 32738 circum 33737 dvasin 35917 3lexlogpow5ineq1 40267 3lexlogpow5ineq5 40273 aks4d1p1 40289 235t711 40522 ex-decpmul 40523 sqrtcval2 41471 resqrtvalex 41474 imsqrtvalex 41475 inductionexd 41986 xralrple3 43149 wallispi 43848 wallispi2lem2 43850 stirlinglem1 43852 dirkertrigeqlem3 43878 257prm 45265 fmtno4prmfac193 45277 fmtno5fac 45286 139prmALT 45300 127prm 45303 2exp340mod341 45437 |
Copyright terms: Public domain | W3C validator |