Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulid1i | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid1i | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid1 10904 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: addid1 11085 0lt1 11427 muleqadd 11549 1t1e1 12065 2t1e2 12066 3t1e3 12068 halfpm6th 12124 9p1e10 12368 numltc 12392 numsucc 12406 dec10p 12409 numadd 12413 numaddc 12414 11multnc 12434 4t3lem 12463 5t2e10 12466 9t11e99 12496 nn0opthlem1 13910 faclbnd4lem1 13935 rei 14795 imi 14796 cji 14798 sqrtm1 14915 0.999... 15521 efival 15789 ef01bndlem 15821 3lcm2e6 16364 decsplit0b 16709 2exp8 16718 37prm 16750 43prm 16751 83prm 16752 139prm 16753 163prm 16754 317prm 16755 1259lem1 16760 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem1 16766 2503lem2 16767 2503prm 16769 4001lem1 16770 4001lem2 16771 4001lem3 16772 cnmsgnsubg 20694 mdetralt 21665 dveflem 25048 dvsincos 25050 efhalfpi 25533 pige3ALT 25581 cosne0 25590 efif1olem4 25606 logf1o2 25710 asin1 25949 dvatan 25990 log2ublem3 26003 log2ub 26004 birthday 26009 basellem9 26143 ppiub 26257 chtub 26265 bposlem8 26344 lgsdir2 26383 mulog2sumlem2 26588 pntlemb 26650 avril1 28728 ipidsq 28973 nmopadjlem 30352 nmopcoadji 30364 unierri 30367 sgnmul 32409 signswch 32440 itgexpif 32486 reprlt 32499 breprexp 32513 hgt750lem 32531 hgt750lem2 32532 circum 33532 dvasin 35788 3lexlogpow5ineq1 39990 3lexlogpow5ineq5 39996 aks4d1p1 40012 235t711 40240 ex-decpmul 40241 sqrtcval2 41139 resqrtvalex 41142 imsqrtvalex 41143 inductionexd 41654 xralrple3 42803 wallispi 43501 wallispi2lem2 43503 stirlinglem1 43505 dirkertrigeqlem3 43531 257prm 44901 fmtno4prmfac193 44913 fmtno5fac 44922 139prmALT 44936 127prm 44939 2exp340mod341 45073 |
Copyright terms: Public domain | W3C validator |