![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulid1i | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid1i | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid1 10488 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2080 (class class class)co 7019 ℂcc 10384 1c1 10387 · cmul 10391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-mulcl 10448 ax-mulcom 10450 ax-mulass 10452 ax-distr 10453 ax-1rid 10456 ax-cnre 10459 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-br 4965 df-iota 6192 df-fv 6236 df-ov 7022 |
This theorem is referenced by: addid1 10669 0lt1 11012 muleqadd 11134 1t1e1 11649 2t1e2 11650 3t1e3 11652 halfpm6th 11708 9p1e10 11950 numltc 11974 numsucc 11988 dec10p 11991 numadd 11995 numaddc 11996 11multnc 12016 4t3lem 12045 5t2e10 12048 9t11e99 12078 nn0opthlem1 13478 faclbnd4lem1 13503 rei 14349 imi 14350 cji 14352 sqrtm1 14469 0.999... 15070 efival 15338 ef01bndlem 15370 3lcm2e6 15901 decsplit0b 16245 2exp8 16252 37prm 16283 43prm 16284 83prm 16285 139prm 16286 163prm 16287 317prm 16288 1259lem1 16293 1259lem2 16294 1259lem3 16295 1259lem4 16296 1259lem5 16297 2503lem1 16299 2503lem2 16300 2503prm 16302 4001lem1 16303 4001lem2 16304 4001lem3 16305 cnmsgnsubg 20403 mdetralt 20901 dveflem 24259 dvsincos 24261 efhalfpi 24740 pige3ALT 24788 cosne0 24795 efif1olem4 24810 logf1o2 24914 asin1 25153 dvatan 25194 log2ublem3 25208 log2ub 25209 birthday 25214 basellem9 25348 ppiub 25462 chtub 25470 bposlem8 25549 lgsdir2 25588 mulog2sumlem2 25793 pntlemb 25855 avril1 27925 ipidsq 28170 nmopadjlem 29549 nmopcoadji 29561 unierri 29564 sgnmul 31409 signswch 31440 itgexpif 31486 reprlt 31499 breprexp 31513 hgt750lem 31531 hgt750lem2 31532 circum 32519 dvasin 34522 235t711 38712 ex-decpmul 38713 inductionexd 40003 xralrple3 41196 wallispi 41911 wallispi2lem2 41913 stirlinglem1 41915 dirkertrigeqlem3 41941 257prm 43219 fmtno4prmfac193 43231 fmtno5fac 43240 139prmALT 43255 127prm 43259 2exp340mod341 43394 |
Copyright terms: Public domain | W3C validator |