Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulid1i | Structured version Visualization version GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid1i | ⊢ (𝐴 · 1) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid1 10973 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 1) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-mulcom 10935 ax-mulass 10937 ax-distr 10938 ax-1rid 10941 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: addid1 11155 0lt1 11497 muleqadd 11619 1t1e1 12135 2t1e2 12136 3t1e3 12138 halfpm6th 12194 9p1e10 12439 numltc 12463 numsucc 12477 dec10p 12480 numadd 12484 numaddc 12485 11multnc 12505 4t3lem 12534 5t2e10 12537 9t11e99 12567 nn0opthlem1 13982 faclbnd4lem1 14007 rei 14867 imi 14868 cji 14870 sqrtm1 14987 0.999... 15593 efival 15861 ef01bndlem 15893 3lcm2e6 16436 decsplit0b 16781 2exp8 16790 37prm 16822 43prm 16823 83prm 16824 139prm 16825 163prm 16826 317prm 16827 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 2503lem1 16838 2503lem2 16839 2503prm 16841 4001lem1 16842 4001lem2 16843 4001lem3 16844 cnmsgnsubg 20782 mdetralt 21757 dveflem 25143 dvsincos 25145 efhalfpi 25628 pige3ALT 25676 cosne0 25685 efif1olem4 25701 logf1o2 25805 asin1 26044 dvatan 26085 log2ublem3 26098 log2ub 26099 birthday 26104 basellem9 26238 ppiub 26352 chtub 26360 bposlem8 26439 lgsdir2 26478 mulog2sumlem2 26683 pntlemb 26745 avril1 28827 ipidsq 29072 nmopadjlem 30451 nmopcoadji 30463 unierri 30466 sgnmul 32509 signswch 32540 itgexpif 32586 reprlt 32599 breprexp 32613 hgt750lem 32631 hgt750lem2 32632 circum 33632 dvasin 35861 3lexlogpow5ineq1 40062 3lexlogpow5ineq5 40068 aks4d1p1 40084 235t711 40319 ex-decpmul 40320 sqrtcval2 41250 resqrtvalex 41253 imsqrtvalex 41254 inductionexd 41765 xralrple3 42913 wallispi 43611 wallispi2lem2 43613 stirlinglem1 43615 dirkertrigeqlem3 43641 257prm 45013 fmtno4prmfac193 45025 fmtno5fac 45034 139prmALT 45048 127prm 45051 2exp340mod341 45185 |
Copyright terms: Public domain | W3C validator |