![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2even | Structured version Visualization version GIF version |
Description: 2 is an even integer. (Contributed by AV, 12-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
Ref | Expression |
---|---|
2even | ⊢ 2 ∈ 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12601 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 2cn 12294 | . . . 4 ⊢ 2 ∈ ℂ | |
3 | 1zzd 12600 | . . . . 5 ⊢ (2 ∈ ℂ → 1 ∈ ℤ) | |
4 | oveq2 7420 | . . . . . . 7 ⊢ (𝑥 = 1 → (2 · 𝑥) = (2 · 1)) | |
5 | 4 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = 1 → (2 = (2 · 𝑥) ↔ 2 = (2 · 1))) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑥 = 1) → (2 = (2 · 𝑥) ↔ 2 = (2 · 1))) |
7 | mulrid 11219 | . . . . . 6 ⊢ (2 ∈ ℂ → (2 · 1) = 2) | |
8 | 7 | eqcomd 2737 | . . . . 5 ⊢ (2 ∈ ℂ → 2 = (2 · 1)) |
9 | 3, 6, 8 | rspcedvd 3614 | . . . 4 ⊢ (2 ∈ ℂ → ∃𝑥 ∈ ℤ 2 = (2 · 𝑥)) |
10 | 2, 9 | ax-mp 5 | . . 3 ⊢ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥) |
11 | eqeq1 2735 | . . . . 5 ⊢ (𝑧 = 2 → (𝑧 = (2 · 𝑥) ↔ 2 = (2 · 𝑥))) | |
12 | 11 | rexbidv 3177 | . . . 4 ⊢ (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥))) |
13 | 12 | elrab 3683 | . . 3 ⊢ (2 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥))) |
14 | 1, 10, 13 | mpbir2an 708 | . 2 ⊢ 2 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
15 | 2zrng.e | . 2 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
16 | 14, 15 | eleqtrri 2831 | 1 ⊢ 2 ∈ 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 {crab 3431 (class class class)co 7412 ℂcc 11114 1c1 11117 · cmul 11121 2c2 12274 ℤcz 12565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rrecex 11188 ax-cnre 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-neg 11454 df-nn 12220 df-2 12282 df-z 12566 |
This theorem is referenced by: 2zrngnmlid 46948 |
Copyright terms: Public domain | W3C validator |