| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2even | Structured version Visualization version GIF version | ||
| Description: 2 is an even integer. (Contributed by AV, 12-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| Ref | Expression |
|---|---|
| 2even | ⊢ 2 ∈ 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12525 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 2cn 12221 | . . . 4 ⊢ 2 ∈ ℂ | |
| 3 | 1zzd 12524 | . . . . 5 ⊢ (2 ∈ ℂ → 1 ∈ ℤ) | |
| 4 | oveq2 7361 | . . . . . . 7 ⊢ (𝑥 = 1 → (2 · 𝑥) = (2 · 1)) | |
| 5 | 4 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑥 = 1 → (2 = (2 · 𝑥) ↔ 2 = (2 · 1))) |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑥 = 1) → (2 = (2 · 𝑥) ↔ 2 = (2 · 1))) |
| 7 | mulrid 11132 | . . . . . 6 ⊢ (2 ∈ ℂ → (2 · 1) = 2) | |
| 8 | 7 | eqcomd 2735 | . . . . 5 ⊢ (2 ∈ ℂ → 2 = (2 · 1)) |
| 9 | 3, 6, 8 | rspcedvd 3581 | . . . 4 ⊢ (2 ∈ ℂ → ∃𝑥 ∈ ℤ 2 = (2 · 𝑥)) |
| 10 | 2, 9 | ax-mp 5 | . . 3 ⊢ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥) |
| 11 | eqeq1 2733 | . . . . 5 ⊢ (𝑧 = 2 → (𝑧 = (2 · 𝑥) ↔ 2 = (2 · 𝑥))) | |
| 12 | 11 | rexbidv 3153 | . . . 4 ⊢ (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥))) |
| 13 | 12 | elrab 3650 | . . 3 ⊢ (2 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥))) |
| 14 | 1, 10, 13 | mpbir2an 711 | . 2 ⊢ 2 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 15 | 2zrng.e | . 2 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 16 | 14, 15 | eleqtrri 2827 | 1 ⊢ 2 ∈ 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 (class class class)co 7353 ℂcc 11026 1c1 11029 · cmul 11033 2c2 12201 ℤcz 12489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rrecex 11100 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-neg 11368 df-nn 12147 df-2 12209 df-z 12490 |
| This theorem is referenced by: 2zrngnmlid 48240 |
| Copyright terms: Public domain | W3C validator |