Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2even Structured version   Visualization version   GIF version

Theorem 2even 48155
Description: 2 is an even integer. (Contributed by AV, 12-Feb-2020.)
Hypothesis
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
Assertion
Ref Expression
2even 2 ∈ 𝐸
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐸(𝑥,𝑧)

Proof of Theorem 2even
StepHypRef Expression
1 2z 12649 . . 3 2 ∈ ℤ
2 2cn 12341 . . . 4 2 ∈ ℂ
3 1zzd 12648 . . . . 5 (2 ∈ ℂ → 1 ∈ ℤ)
4 oveq2 7439 . . . . . . 7 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
54eqeq2d 2748 . . . . . 6 (𝑥 = 1 → (2 = (2 · 𝑥) ↔ 2 = (2 · 1)))
65adantl 481 . . . . 5 ((2 ∈ ℂ ∧ 𝑥 = 1) → (2 = (2 · 𝑥) ↔ 2 = (2 · 1)))
7 mulrid 11259 . . . . . 6 (2 ∈ ℂ → (2 · 1) = 2)
87eqcomd 2743 . . . . 5 (2 ∈ ℂ → 2 = (2 · 1))
93, 6, 8rspcedvd 3624 . . . 4 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 2 = (2 · 𝑥))
102, 9ax-mp 5 . . 3 𝑥 ∈ ℤ 2 = (2 · 𝑥)
11 eqeq1 2741 . . . . 5 (𝑧 = 2 → (𝑧 = (2 · 𝑥) ↔ 2 = (2 · 𝑥)))
1211rexbidv 3179 . . . 4 (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥)))
1312elrab 3692 . . 3 (2 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥)))
141, 10, 13mpbir2an 711 . 2 2 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
15 2zrng.e . 2 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
1614, 15eleqtrri 2840 1 2 ∈ 𝐸
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  (class class class)co 7431  cc 11153  1c1 11156   · cmul 11160  2c2 12321  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rrecex 11227  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-neg 11495  df-nn 12267  df-2 12329  df-z 12614
This theorem is referenced by:  2zrngnmlid  48171
  Copyright terms: Public domain W3C validator