| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2even | Structured version Visualization version GIF version | ||
| Description: 2 is an even integer. (Contributed by AV, 12-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| Ref | Expression |
|---|---|
| 2even | ⊢ 2 ∈ 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12510 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 2cn 12207 | . . . 4 ⊢ 2 ∈ ℂ | |
| 3 | 1zzd 12509 | . . . . 5 ⊢ (2 ∈ ℂ → 1 ∈ ℤ) | |
| 4 | oveq2 7360 | . . . . . . 7 ⊢ (𝑥 = 1 → (2 · 𝑥) = (2 · 1)) | |
| 5 | 4 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑥 = 1 → (2 = (2 · 𝑥) ↔ 2 = (2 · 1))) |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 𝑥 = 1) → (2 = (2 · 𝑥) ↔ 2 = (2 · 1))) |
| 7 | mulrid 11117 | . . . . . 6 ⊢ (2 ∈ ℂ → (2 · 1) = 2) | |
| 8 | 7 | eqcomd 2739 | . . . . 5 ⊢ (2 ∈ ℂ → 2 = (2 · 1)) |
| 9 | 3, 6, 8 | rspcedvd 3575 | . . . 4 ⊢ (2 ∈ ℂ → ∃𝑥 ∈ ℤ 2 = (2 · 𝑥)) |
| 10 | 2, 9 | ax-mp 5 | . . 3 ⊢ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥) |
| 11 | eqeq1 2737 | . . . . 5 ⊢ (𝑧 = 2 → (𝑧 = (2 · 𝑥) ↔ 2 = (2 · 𝑥))) | |
| 12 | 11 | rexbidv 3157 | . . . 4 ⊢ (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥))) |
| 13 | 12 | elrab 3643 | . . 3 ⊢ (2 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = (2 · 𝑥))) |
| 14 | 1, 10, 13 | mpbir2an 711 | . 2 ⊢ 2 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 15 | 2zrng.e | . 2 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 16 | 14, 15 | eleqtrri 2832 | 1 ⊢ 2 ∈ 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 (class class class)co 7352 ℂcc 11011 1c1 11014 · cmul 11018 2c2 12187 ℤcz 12475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rrecex 11085 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-neg 11354 df-nn 12133 df-2 12195 df-z 12476 |
| This theorem is referenced by: 2zrngnmlid 48379 |
| Copyright terms: Public domain | W3C validator |