MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcvg Structured version   Visualization version   GIF version

Theorem fprodcvg 15978
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
fprodcvg.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fprodcvg (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodcvg
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (ℤ𝑁) = (ℤ𝑁)
2 prodrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 12913 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 17 . 2 (𝜑𝑁 ∈ ℤ)
5 seqex 14054 . . 3 seq𝑀( · , 𝐹) ∈ V
65a1i 11 . 2 (𝜑 → seq𝑀( · , 𝐹) ∈ V)
7 eqid 2740 . . . 4 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 12908 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
92, 8syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
10 eluzelz 12913 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1110adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
12 iftrue 4554 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
1312adantl 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
14 prodmo.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1514adantlr 714 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
1613, 15eqeltrd 2844 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1716ex 412 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
18 iffalse 4557 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
19 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
2018, 19eqeltrdi 2852 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
2117, 20pm2.61d1 180 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
22 prodmo.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
2322fvmpt2 7040 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
2411, 21, 23syl2anc 583 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
2524, 21eqeltrd 2844 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
267, 9, 25prodf 15935 . . 3 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
2726, 2ffvelcdmd 7119 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
28 mulrid 11288 . . . . 5 (𝑚 ∈ ℂ → (𝑚 · 1) = 𝑚)
2928adantl 481 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ℂ) → (𝑚 · 1) = 𝑚)
302adantr 480 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
31 simpr 484 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
329adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
3325adantlr 714 . . . . . 6 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
347, 32, 33prodf 15935 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3534, 30ffvelcdmd 7119 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
36 elfzuz 13580 . . . . . 6 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
37 eluzelz 12913 . . . . . . . . 9 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → 𝑚 ∈ ℤ)
3837adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ ℤ)
39 fprodcvg.4 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (𝑀...𝑁))
4039sseld 4007 . . . . . . . . . . 11 (𝜑 → (𝑚𝐴𝑚 ∈ (𝑀...𝑁)))
41 fznuz 13666 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑁) → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1)))
4240, 41syl6 35 . . . . . . . . . 10 (𝜑 → (𝑚𝐴 → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1))))
4342con2d 134 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ‘(𝑁 + 1)) → ¬ 𝑚𝐴))
4443imp 406 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑚𝐴)
4538, 44eldifd 3987 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ (ℤ ∖ 𝐴))
46 fveqeq2 6929 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) = 1 ↔ (𝐹𝑚) = 1))
47 eldifi 4154 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
48 eldifn 4155 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
4948, 18syl 17 . . . . . . . . . . 11 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) = 1)
5049, 19eqeltrdi 2852 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
5147, 50, 23syl2anc 583 . . . . . . . . 9 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
5251, 49eqtrd 2780 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 1)
5346, 52vtoclga 3589 . . . . . . 7 (𝑚 ∈ (ℤ ∖ 𝐴) → (𝐹𝑚) = 1)
5445, 53syl 17 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑚) = 1)
5536, 54sylan2 592 . . . . 5 ((𝜑𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 1)
5655adantlr 714 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 1)
5729, 30, 31, 35, 56seqid2 14099 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑁) = (seq𝑀( · , 𝐹)‘𝑛))
5857eqcomd 2746 . 2 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) = (seq𝑀( · , 𝐹)‘𝑁))
591, 4, 6, 27, 58climconst 15589 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  prodmolem2a  15982
  Copyright terms: Public domain W3C validator