MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcvg Structured version   Visualization version   GIF version

Theorem fprodcvg 15906
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 1))
prodmo.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
prodrb.3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
fprodcvg.4 (πœ‘ β†’ 𝐴 βŠ† (𝑀...𝑁))
Assertion
Ref Expression
fprodcvg (πœ‘ β†’ seq𝑀( Β· , 𝐹) ⇝ (seq𝑀( Β· , 𝐹)β€˜π‘))
Distinct variable groups:   𝐴,π‘˜   π‘˜,𝐹   πœ‘,π‘˜   π‘˜,𝑀   π‘˜,𝑁
Allowed substitution hint:   𝐡(π‘˜)

Proof of Theorem fprodcvg
Dummy variables 𝑛 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . 2 (β„€β‰₯β€˜π‘) = (β„€β‰₯β€˜π‘)
2 prodrb.3 . . 3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
3 eluzelz 12862 . . 3 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑁 ∈ β„€)
42, 3syl 17 . 2 (πœ‘ β†’ 𝑁 ∈ β„€)
5 seqex 14000 . . 3 seq𝑀( Β· , 𝐹) ∈ V
65a1i 11 . 2 (πœ‘ β†’ seq𝑀( Β· , 𝐹) ∈ V)
7 eqid 2725 . . . 4 (β„€β‰₯β€˜π‘€) = (β„€β‰₯β€˜π‘€)
8 eluzel2 12857 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
92, 8syl 17 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„€)
10 eluzelz 12862 . . . . . . 7 (π‘˜ ∈ (β„€β‰₯β€˜π‘€) β†’ π‘˜ ∈ β„€)
1110adantl 480 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ π‘˜ ∈ β„€)
12 iftrue 4530 . . . . . . . . . 10 (π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) = 𝐡)
1312adantl 480 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) ∧ π‘˜ ∈ 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) = 𝐡)
14 prodmo.2 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
1514adantlr 713 . . . . . . . . 9 (((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
1613, 15eqeltrd 2825 . . . . . . . 8 (((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) ∧ π‘˜ ∈ 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) ∈ β„‚)
1716ex 411 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) ∈ β„‚))
18 iffalse 4533 . . . . . . . 8 (Β¬ π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) = 1)
19 ax-1cn 11196 . . . . . . . 8 1 ∈ β„‚
2018, 19eqeltrdi 2833 . . . . . . 7 (Β¬ π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) ∈ β„‚)
2117, 20pm2.61d1 180 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) ∈ β„‚)
22 prodmo.1 . . . . . . 7 𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 1))
2322fvmpt2 7011 . . . . . 6 ((π‘˜ ∈ β„€ ∧ if(π‘˜ ∈ 𝐴, 𝐡, 1) ∈ β„‚) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 1))
2411, 21, 23syl2anc 582 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 1))
2524, 21eqeltrd 2825 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
267, 9, 25prodf 15865 . . 3 (πœ‘ β†’ seq𝑀( Β· , 𝐹):(β„€β‰₯β€˜π‘€)βŸΆβ„‚)
2726, 2ffvelcdmd 7090 . 2 (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) ∈ β„‚)
28 mulrid 11242 . . . . 5 (π‘š ∈ β„‚ β†’ (π‘š Β· 1) = π‘š)
2928adantl 480 . . . 4 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ β„‚) β†’ (π‘š Β· 1) = π‘š)
302adantr 479 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
31 simpr 483 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘))
329adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑀 ∈ β„€)
3325adantlr 713 . . . . . 6 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
347, 32, 33prodf 15865 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ seq𝑀( Β· , 𝐹):(β„€β‰₯β€˜π‘€)βŸΆβ„‚)
3534, 30ffvelcdmd 7090 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) ∈ β„‚)
36 elfzuz 13529 . . . . . 6 (π‘š ∈ ((𝑁 + 1)...𝑛) β†’ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)))
37 eluzelz 12862 . . . . . . . . 9 (π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ π‘š ∈ β„€)
3837adantl 480 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘š ∈ β„€)
39 fprodcvg.4 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 βŠ† (𝑀...𝑁))
4039sseld 3971 . . . . . . . . . . 11 (πœ‘ β†’ (π‘š ∈ 𝐴 β†’ π‘š ∈ (𝑀...𝑁)))
41 fznuz 13615 . . . . . . . . . . 11 (π‘š ∈ (𝑀...𝑁) β†’ Β¬ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)))
4240, 41syl6 35 . . . . . . . . . 10 (πœ‘ β†’ (π‘š ∈ 𝐴 β†’ Β¬ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))))
4342con2d 134 . . . . . . . . 9 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ Β¬ π‘š ∈ 𝐴))
4443imp 405 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ Β¬ π‘š ∈ 𝐴)
4538, 44eldifd 3950 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘š ∈ (β„€ βˆ– 𝐴))
46 fveqeq2 6901 . . . . . . . 8 (π‘˜ = π‘š β†’ ((πΉβ€˜π‘˜) = 1 ↔ (πΉβ€˜π‘š) = 1))
47 eldifi 4119 . . . . . . . . . 10 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ π‘˜ ∈ β„€)
48 eldifn 4120 . . . . . . . . . . . 12 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ Β¬ π‘˜ ∈ 𝐴)
4948, 18syl 17 . . . . . . . . . . 11 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) = 1)
5049, 19eqeltrdi 2833 . . . . . . . . . 10 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 1) ∈ β„‚)
5147, 50, 23syl2anc 582 . . . . . . . . 9 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 1))
5251, 49eqtrd 2765 . . . . . . . 8 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘˜) = 1)
5346, 52vtoclga 3555 . . . . . . 7 (π‘š ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘š) = 1)
5445, 53syl 17 . . . . . 6 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜π‘š) = 1)
5536, 54sylan2 591 . . . . 5 ((πœ‘ ∧ π‘š ∈ ((𝑁 + 1)...𝑛)) β†’ (πΉβ€˜π‘š) = 1)
5655adantlr 713 . . . 4 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ ((𝑁 + 1)...𝑛)) β†’ (πΉβ€˜π‘š) = 1)
5729, 30, 31, 35, 56seqid2 14045 . . 3 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) = (seq𝑀( Β· , 𝐹)β€˜π‘›))
5857eqcomd 2731 . 2 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) = (seq𝑀( Β· , 𝐹)β€˜π‘))
591, 4, 6, 27, 58climconst 15519 1 (πœ‘ β†’ seq𝑀( Β· , 𝐹) ⇝ (seq𝑀( Β· , 𝐹)β€˜π‘))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3463   βˆ– cdif 3936   βŠ† wss 3939  ifcif 4524   class class class wbr 5143   ↦ cmpt 5226  β€˜cfv 6543  (class class class)co 7416  β„‚cc 11136  1c1 11139   + caddc 11141   Β· cmul 11143  β„€cz 12588  β„€β‰₯cuz 12852  ...cfz 13516  seqcseq 13998   ⇝ cli 15460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464
This theorem is referenced by:  prodmolem2a  15910
  Copyright terms: Public domain W3C validator