![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > binom21 | Structured version Visualization version GIF version |
Description: Special case of binom2 13434 where 𝐵 = 1. (Contributed by Scott Fenton, 11-May-2014.) |
Ref | Expression |
---|---|
binom21 | ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10446 | . . 3 ⊢ 1 ∈ ℂ | |
2 | binom2 13434 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))) |
4 | mulid1 10490 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 4 | oveq2d 7037 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · (𝐴 · 1)) = (2 · 𝐴)) |
6 | 5 | oveq2d 7037 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴↑2) + (2 · 𝐴))) |
7 | sq1 13413 | . . . 4 ⊢ (1↑2) = 1 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → (1↑2) = 1) |
9 | 6, 8 | oveq12d 7039 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
10 | 3, 9 | eqtrd 2831 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 (class class class)co 7021 ℂcc 10386 1c1 10389 + caddc 10391 · cmul 10393 2c2 11545 ↑cexp 13284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-div 11151 df-nn 11492 df-2 11553 df-n0 11751 df-z 11835 df-uz 12099 df-seq 13225 df-exp 13285 |
This theorem is referenced by: zesq 13442 sqoddm1div8 13459 fsumcube 15252 4sqlem12 16126 2lgsoddprmlem3c 25675 pntlemk 25869 ex-exp 27926 sqrtpwpw2p 43209 fmtnorec4 43220 |
Copyright terms: Public domain | W3C validator |