Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulid2 | Structured version Visualization version GIF version |
Description: Identity law for multiplication. See mulid1 10973 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10929 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 10957 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulid1 10973 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-mulcom 10935 ax-mulass 10937 ax-distr 10938 ax-1rid 10941 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: mulid2i 10980 mulid2d 10993 muladd11 11145 1p1times 11146 mul02lem1 11151 cnegex2 11157 mulm1 11416 div1 11664 subdivcomb2 11671 recdiv 11681 divdiv2 11687 conjmul 11692 ser1const 13779 expp1 13789 recan 15048 arisum 15572 geo2sum 15585 prodrblem 15639 prodmolem2a 15644 risefac1 15743 fallfac1 15744 bpoly3 15768 bpoly4 15769 sinhval 15863 coshval 15864 demoivreALT 15910 gcdadd 16233 gcdid 16234 cncrng 20619 cnfld1 20623 blcvx 23961 icccvx 24113 cnlmod 24303 coeidp 25424 dgrid 25425 quartlem1 26007 asinsinlem 26041 asinsin 26042 atantan 26073 musumsum 26341 brbtwn2 27273 axsegconlem1 27285 ax5seglem1 27296 ax5seglem2 27297 ax5seglem4 27300 ax5seglem5 27301 axeuclid 27331 axcontlem2 27333 axcontlem4 27335 cncvcOLD 28945 dvcosax 43467 |
Copyright terms: Public domain | W3C validator |