![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulid2 | Structured version Visualization version GIF version |
Description: Identity law for multiplication. See mulid1 10492 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10448 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 10476 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 686 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulid1 10492 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2833 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 (class class class)co 7023 ℂcc 10388 1c1 10391 · cmul 10395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-mulcl 10452 ax-mulcom 10454 ax-mulass 10456 ax-distr 10457 ax-1rid 10460 ax-cnre 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-iota 6196 df-fv 6240 df-ov 7026 |
This theorem is referenced by: mulid2i 10499 mulid2d 10512 muladd11 10663 1p1times 10664 mul02lem1 10669 cnegex2 10675 mulm1 10935 div1 11183 subdivcomb2 11190 recdiv 11200 divdiv2 11206 conjmul 11211 ser1const 13280 expp1 13290 recan 14534 arisum 15052 geo2sum 15066 prodrblem 15120 prodmolem2a 15125 risefac1 15224 fallfac1 15225 bpoly3 15249 bpoly4 15250 sinhval 15344 coshval 15345 demoivreALT 15391 gcdadd 15711 gcdid 15712 cncrng 20252 cnfld1 20256 blcvx 23093 icccvx 23241 cnlmod 23431 coeidp 24540 dgrid 24541 quartlem1 25120 asinsinlem 25154 asinsin 25155 atantan 25186 musumsum 25455 brbtwn2 26378 axsegconlem1 26390 ax5seglem1 26401 ax5seglem2 26402 ax5seglem4 26405 ax5seglem5 26406 axeuclid 26436 axcontlem2 26438 axcontlem4 26440 cncvcOLD 28047 dvcosax 41774 |
Copyright terms: Public domain | W3C validator |