Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulid2 | Structured version Visualization version GIF version |
Description: Identity law for multiplication. See mulid1 10957 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10913 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 10941 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 686 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulid1 10957 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2779 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 1c1 10856 · cmul 10860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-mulcl 10917 ax-mulcom 10919 ax-mulass 10921 ax-distr 10922 ax-1rid 10925 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: mulid2i 10964 mulid2d 10977 muladd11 11128 1p1times 11129 mul02lem1 11134 cnegex2 11140 mulm1 11399 div1 11647 subdivcomb2 11654 recdiv 11664 divdiv2 11670 conjmul 11675 ser1const 13760 expp1 13770 recan 15029 arisum 15553 geo2sum 15566 prodrblem 15620 prodmolem2a 15625 risefac1 15724 fallfac1 15725 bpoly3 15749 bpoly4 15750 sinhval 15844 coshval 15845 demoivreALT 15891 gcdadd 16214 gcdid 16215 cncrng 20600 cnfld1 20604 blcvx 23942 icccvx 24094 cnlmod 24284 coeidp 25405 dgrid 25406 quartlem1 25988 asinsinlem 26022 asinsin 26023 atantan 26054 musumsum 26322 brbtwn2 27254 axsegconlem1 27266 ax5seglem1 27277 ax5seglem2 27278 ax5seglem4 27281 ax5seglem5 27282 axeuclid 27312 axcontlem2 27314 axcontlem4 27316 cncvcOLD 28924 dvcosax 43421 |
Copyright terms: Public domain | W3C validator |