Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulid2 | Structured version Visualization version GIF version |
Description: Identity law for multiplication. See mulid1 10904 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10860 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 10888 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 686 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulid1 10904 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: mulid2i 10911 mulid2d 10924 muladd11 11075 1p1times 11076 mul02lem1 11081 cnegex2 11087 mulm1 11346 div1 11594 subdivcomb2 11601 recdiv 11611 divdiv2 11617 conjmul 11622 ser1const 13707 expp1 13717 recan 14976 arisum 15500 geo2sum 15513 prodrblem 15567 prodmolem2a 15572 risefac1 15671 fallfac1 15672 bpoly3 15696 bpoly4 15697 sinhval 15791 coshval 15792 demoivreALT 15838 gcdadd 16161 gcdid 16162 cncrng 20531 cnfld1 20535 blcvx 23867 icccvx 24019 cnlmod 24209 coeidp 25329 dgrid 25330 quartlem1 25912 asinsinlem 25946 asinsin 25947 atantan 25978 musumsum 26246 brbtwn2 27176 axsegconlem1 27188 ax5seglem1 27199 ax5seglem2 27200 ax5seglem4 27203 ax5seglem5 27204 axeuclid 27234 axcontlem2 27236 axcontlem4 27238 cncvcOLD 28846 dvcosax 43357 |
Copyright terms: Public domain | W3C validator |