MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjmul Structured version   Visualization version   GIF version

Theorem conjmul 12011
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 12-Nov-2006.)
Assertion
Ref Expression
conjmul (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))

Proof of Theorem conjmul
StepHypRef Expression
1 simpll 766 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → 𝑃 ∈ ℂ)
2 simprl 770 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → 𝑄 ∈ ℂ)
3 reccl 11956 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → (1 / 𝑃) ∈ ℂ)
43adantr 480 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 / 𝑃) ∈ ℂ)
51, 2, 4mul32d 11500 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = ((𝑃 · (1 / 𝑃)) · 𝑄))
6 recid 11963 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → (𝑃 · (1 / 𝑃)) = 1)
76oveq1d 7463 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
87adantr 480 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
9 mullid 11289 . . . . . . 7 (𝑄 ∈ ℂ → (1 · 𝑄) = 𝑄)
109ad2antrl 727 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 · 𝑄) = 𝑄)
115, 8, 103eqtrd 2784 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = 𝑄)
12 reccl 11956 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (1 / 𝑄) ∈ ℂ)
1312adantl 481 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 / 𝑄) ∈ ℂ)
141, 2, 13mulassd 11313 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = (𝑃 · (𝑄 · (1 / 𝑄))))
15 recid 11963 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (𝑄 · (1 / 𝑄)) = 1)
1615oveq2d 7464 . . . . . . 7 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
1716adantl 481 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
18 mulrid 11288 . . . . . . 7 (𝑃 ∈ ℂ → (𝑃 · 1) = 𝑃)
1918ad2antrr 725 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 1) = 𝑃)
2014, 17, 193eqtrd 2784 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = 𝑃)
2111, 20oveq12d 7466 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))) = (𝑄 + 𝑃))
22 mulcl 11268 . . . . . 6 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 · 𝑄) ∈ ℂ)
2322ad2ant2r 746 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 𝑄) ∈ ℂ)
2423, 4, 13adddid 11314 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))))
25 addcom 11476 . . . . 5 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2625ad2ant2r 746 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2721, 24, 263eqtr4d 2790 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (𝑃 + 𝑄))
2822mulridd 11307 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
2928ad2ant2r 746 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
3027, 29eqeq12d 2756 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ (𝑃 + 𝑄) = (𝑃 · 𝑄)))
31 addcl 11266 . . . 4 (((1 / 𝑃) ∈ ℂ ∧ (1 / 𝑄) ∈ ℂ) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
323, 12, 31syl2an 595 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
33 mulne0 11932 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 𝑄) ≠ 0)
34 ax-1cn 11242 . . . 4 1 ∈ ℂ
35 mulcan 11927 . . . 4 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3634, 35mp3an2 1449 . . 3 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3732, 23, 33, 36syl12anc 836 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
38 eqcom 2747 . . . 4 ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ (𝑃 · 𝑄) = (𝑃 + 𝑄))
39 muleqadd 11934 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) = (𝑃 + 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4038, 39bitrid 283 . . 3 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4140ad2ant2r 746 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4230, 37, 413bitr3d 309 1 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator