MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjmul Structured version   Visualization version   GIF version

Theorem conjmul 11549
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 12-Nov-2006.)
Assertion
Ref Expression
conjmul (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))

Proof of Theorem conjmul
StepHypRef Expression
1 simpll 767 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → 𝑃 ∈ ℂ)
2 simprl 771 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → 𝑄 ∈ ℂ)
3 reccl 11497 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → (1 / 𝑃) ∈ ℂ)
43adantr 484 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 / 𝑃) ∈ ℂ)
51, 2, 4mul32d 11042 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = ((𝑃 · (1 / 𝑃)) · 𝑄))
6 recid 11504 . . . . . . . 8 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → (𝑃 · (1 / 𝑃)) = 1)
76oveq1d 7228 . . . . . . 7 ((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
87adantr 484 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · (1 / 𝑃)) · 𝑄) = (1 · 𝑄))
9 mulid2 10832 . . . . . . 7 (𝑄 ∈ ℂ → (1 · 𝑄) = 𝑄)
109ad2antrl 728 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 · 𝑄) = 𝑄)
115, 8, 103eqtrd 2781 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑃)) = 𝑄)
12 reccl 11497 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (1 / 𝑄) ∈ ℂ)
1312adantl 485 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (1 / 𝑄) ∈ ℂ)
141, 2, 13mulassd 10856 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = (𝑃 · (𝑄 · (1 / 𝑄))))
15 recid 11504 . . . . . . . 8 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (𝑄 · (1 / 𝑄)) = 1)
1615oveq2d 7229 . . . . . . 7 ((𝑄 ∈ ℂ ∧ 𝑄 ≠ 0) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
1716adantl 485 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · (𝑄 · (1 / 𝑄))) = (𝑃 · 1))
18 mulid1 10831 . . . . . . 7 (𝑃 ∈ ℂ → (𝑃 · 1) = 𝑃)
1918ad2antrr 726 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 1) = 𝑃)
2014, 17, 193eqtrd 2781 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · (1 / 𝑄)) = 𝑃)
2111, 20oveq12d 7231 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))) = (𝑄 + 𝑃))
22 mulcl 10813 . . . . . 6 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 · 𝑄) ∈ ℂ)
2322ad2ant2r 747 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 𝑄) ∈ ℂ)
2423, 4, 13adddid 10857 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (((𝑃 · 𝑄) · (1 / 𝑃)) + ((𝑃 · 𝑄) · (1 / 𝑄))))
25 addcom 11018 . . . . 5 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2625ad2ant2r 747 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 + 𝑄) = (𝑄 + 𝑃))
2721, 24, 263eqtr4d 2787 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = (𝑃 + 𝑄))
2822mulid1d 10850 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
2928ad2ant2r 747 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 · 𝑄) · 1) = (𝑃 · 𝑄))
3027, 29eqeq12d 2753 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ (𝑃 + 𝑄) = (𝑃 · 𝑄)))
31 addcl 10811 . . . 4 (((1 / 𝑃) ∈ ℂ ∧ (1 / 𝑄) ∈ ℂ) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
323, 12, 31syl2an 599 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ)
33 mulne0 11474 . . 3 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (𝑃 · 𝑄) ≠ 0)
34 ax-1cn 10787 . . . 4 1 ∈ ℂ
35 mulcan 11469 . . . 4 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3634, 35mp3an2 1451 . . 3 ((((1 / 𝑃) + (1 / 𝑄)) ∈ ℂ ∧ ((𝑃 · 𝑄) ∈ ℂ ∧ (𝑃 · 𝑄) ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
3732, 23, 33, 36syl12anc 837 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((𝑃 · 𝑄) · ((1 / 𝑃) + (1 / 𝑄))) = ((𝑃 · 𝑄) · 1) ↔ ((1 / 𝑃) + (1 / 𝑄)) = 1))
38 eqcom 2744 . . . 4 ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ (𝑃 · 𝑄) = (𝑃 + 𝑄))
39 muleqadd 11476 . . . 4 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 · 𝑄) = (𝑃 + 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4038, 39syl5bb 286 . . 3 ((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4140ad2ant2r 747 . 2 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((𝑃 + 𝑄) = (𝑃 · 𝑄) ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
4230, 37, 413bitr3d 312 1 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  cmin 11062   / cdiv 11489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator