![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashiun | Structured version Visualization version GIF version |
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
fsumiun.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumiun.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
fsumiun.3 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
hashiun | ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumiun.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fsumiun.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) | |
3 | fsumiun.3 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
4 | 1cnd 11285 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 1 ∈ ℂ) | |
5 | 1, 2, 3, 4 | fsumiun 15869 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 1) |
6 | 2 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
7 | iunfi 9411 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | |
8 | 1, 6, 7 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
9 | ax-1cn 11242 | . . . 4 ⊢ 1 ∈ ℂ | |
10 | fsumconst 15838 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1)) | |
11 | 8, 9, 10 | sylancl 585 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1)) |
12 | hashcl 14405 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℕ0) | |
13 | nn0cn 12563 | . . . 4 ⊢ ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℕ0 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℂ) | |
14 | mulrid 11288 | . . . 4 ⊢ ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℂ → ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1) = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) | |
15 | 8, 12, 13, 14 | 4syl 19 | . . 3 ⊢ (𝜑 → ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1) = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) |
16 | 11, 15 | eqtrd 2780 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) |
17 | fsumconst 15838 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) | |
18 | 2, 9, 17 | sylancl 585 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) |
19 | hashcl 14405 | . . . . 5 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
20 | nn0cn 12563 | . . . . 5 ⊢ ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ) | |
21 | mulrid 11288 | . . . . 5 ⊢ ((♯‘𝐵) ∈ ℂ → ((♯‘𝐵) · 1) = (♯‘𝐵)) | |
22 | 2, 19, 20, 21 | 4syl 19 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((♯‘𝐵) · 1) = (♯‘𝐵)) |
23 | 18, 22 | eqtrd 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 1 = (♯‘𝐵)) |
24 | 23 | sumeq2dv 15750 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 1 = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
25 | 5, 16, 24 | 3eqtr3d 2788 | 1 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ ciun 5015 Disj wdisj 5133 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℂcc 11182 1c1 11185 · cmul 11189 ℕ0cn0 12553 ♯chash 14379 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 |
This theorem is referenced by: hash2iun 15871 hashrabrex 15873 hashuni 15874 ackbijnn 15876 phisum 16837 cshwshashnsame 17151 lgsquadlem1 27442 lgsquadlem2 27443 numedglnl 29179 fusgreghash2wsp 30370 numclwwlk4 30418 hashunif 32813 poimirlem26 37606 poimirlem27 37607 grpods 42151 |
Copyright terms: Public domain | W3C validator |