MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashiun Structured version   Visualization version   GIF version

Theorem hashiun 15731
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1 (𝜑𝐴 ∈ Fin)
fsumiun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiun.3 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
hashiun (𝜑 → (♯‘ 𝑥𝐴 𝐵) = Σ𝑥𝐴 (♯‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem hashiun
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fsumiun.1 . . 3 (𝜑𝐴 ∈ Fin)
2 fsumiun.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
3 fsumiun.3 . . 3 (𝜑Disj 𝑥𝐴 𝐵)
4 1cnd 11114 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 1 ∈ ℂ)
51, 2, 3, 4fsumiun 15730 . 2 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = Σ𝑥𝐴 Σ𝑘𝐵 1)
62ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
7 iunfi 9234 . . . . 5 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin) → 𝑥𝐴 𝐵 ∈ Fin)
81, 6, 7syl2anc 584 . . . 4 (𝜑 𝑥𝐴 𝐵 ∈ Fin)
9 ax-1cn 11071 . . . 4 1 ∈ ℂ
10 fsumconst 15699 . . . 4 (( 𝑥𝐴 𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 𝑥𝐴 𝐵1 = ((♯‘ 𝑥𝐴 𝐵) · 1))
118, 9, 10sylancl 586 . . 3 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = ((♯‘ 𝑥𝐴 𝐵) · 1))
12 hashcl 14265 . . . 4 ( 𝑥𝐴 𝐵 ∈ Fin → (♯‘ 𝑥𝐴 𝐵) ∈ ℕ0)
13 nn0cn 12398 . . . 4 ((♯‘ 𝑥𝐴 𝐵) ∈ ℕ0 → (♯‘ 𝑥𝐴 𝐵) ∈ ℂ)
14 mulrid 11117 . . . 4 ((♯‘ 𝑥𝐴 𝐵) ∈ ℂ → ((♯‘ 𝑥𝐴 𝐵) · 1) = (♯‘ 𝑥𝐴 𝐵))
158, 12, 13, 144syl 19 . . 3 (𝜑 → ((♯‘ 𝑥𝐴 𝐵) · 1) = (♯‘ 𝑥𝐴 𝐵))
1611, 15eqtrd 2768 . 2 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = (♯‘ 𝑥𝐴 𝐵))
17 fsumconst 15699 . . . . 5 ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘𝐵 1 = ((♯‘𝐵) · 1))
182, 9, 17sylancl 586 . . . 4 ((𝜑𝑥𝐴) → Σ𝑘𝐵 1 = ((♯‘𝐵) · 1))
19 hashcl 14265 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
20 nn0cn 12398 . . . . 5 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
21 mulrid 11117 . . . . 5 ((♯‘𝐵) ∈ ℂ → ((♯‘𝐵) · 1) = (♯‘𝐵))
222, 19, 20, 214syl 19 . . . 4 ((𝜑𝑥𝐴) → ((♯‘𝐵) · 1) = (♯‘𝐵))
2318, 22eqtrd 2768 . . 3 ((𝜑𝑥𝐴) → Σ𝑘𝐵 1 = (♯‘𝐵))
2423sumeq2dv 15611 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑘𝐵 1 = Σ𝑥𝐴 (♯‘𝐵))
255, 16, 243eqtr3d 2776 1 (𝜑 → (♯‘ 𝑥𝐴 𝐵) = Σ𝑥𝐴 (♯‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   ciun 4941  Disj wdisj 5060  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  1c1 11014   · cmul 11018  0cn0 12388  chash 14239  Σcsu 15595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596
This theorem is referenced by:  hash2iun  15732  hashrabrex  15734  hashuni  15735  ackbijnn  15737  phisum  16704  cshwshashnsame  17017  lgsquadlem1  27319  lgsquadlem2  27320  numedglnl  29124  fusgreghash2wsp  30320  numclwwlk4  30368  hashunif  32793  poimirlem26  37706  poimirlem27  37707  grpods  42307
  Copyright terms: Public domain W3C validator