| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0dgr | Structured version Visualization version GIF version | ||
| Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| 0dgr | ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3979 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 2 | plyconst 26150 | . . . 4 ⊢ ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ)) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ)) |
| 4 | 0nn0 12509 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
| 6 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...0)) → 𝐴 ∈ ℂ) | |
| 7 | fconstmpt 5714 | . . . 4 ⊢ (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴) | |
| 8 | 0z 12592 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 9 | exp0 14073 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℂ → (𝑧↑0) = 1) | |
| 10 | 9 | oveq2d 7416 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℂ → (𝐴 · (𝑧↑0)) = (𝐴 · 1)) |
| 11 | mulrid 11226 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 12 | 10, 11 | sylan9eqr 2791 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) = 𝐴) |
| 13 | simpl 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 14 | 12, 13 | eqeltrd 2833 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) ∈ ℂ) |
| 15 | oveq2 7408 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑧↑𝑘) = (𝑧↑0)) | |
| 16 | 15 | oveq2d 7416 | . . . . . . . 8 ⊢ (𝑘 = 0 → (𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
| 17 | 16 | fsum1 15752 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ (𝐴 · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
| 18 | 8, 14, 17 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
| 19 | 18, 12 | eqtrd 2769 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = 𝐴) |
| 20 | 19 | mpteq2dva 5212 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ 𝐴)) |
| 21 | 7, 20 | eqtr4id 2788 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)))) |
| 22 | 3, 5, 6, 21 | dgrle 26187 | . 2 ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) ≤ 0) |
| 23 | dgrcl 26177 | . . 3 ⊢ ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → (deg‘(ℂ × {𝐴})) ∈ ℕ0) | |
| 24 | nn0le0eq0 12522 | . . 3 ⊢ ((deg‘(ℂ × {𝐴})) ∈ ℕ0 → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0)) | |
| 25 | 3, 23, 24 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ℂ → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0)) |
| 26 | 22, 25 | mpbid 232 | 1 ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3924 {csn 4599 class class class wbr 5117 ↦ cmpt 5199 × cxp 5650 ‘cfv 6528 (class class class)co 7400 ℂcc 11120 0cc0 11122 1c1 11123 · cmul 11127 ≤ cle 11263 ℕ0cn0 12494 ℤcz 12581 ...cfz 13514 ↑cexp 14069 Σcsu 15691 Polycply 26128 degcdgr 26131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-pm 8838 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-sup 9449 df-inf 9450 df-oi 9517 df-card 9946 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-n0 12495 df-z 12582 df-uz 12846 df-rp 13002 df-fz 13515 df-fzo 13662 df-fl 13799 df-seq 14010 df-exp 14070 df-hash 14339 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-clim 15493 df-rlim 15494 df-sum 15692 df-0p 25610 df-ply 26132 df-coe 26134 df-dgr 26135 |
| This theorem is referenced by: 0dgrb 26190 coemulc 26199 dgr0 26207 dgrmulc 26216 dgrcolem2 26219 plyremlem 26251 vieta1lem2 26258 |
| Copyright terms: Public domain | W3C validator |