![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dgr | Structured version Visualization version GIF version |
Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
0dgr | β’ (π΄ β β β (degβ(β Γ {π΄})) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4003 | . . . 4 β’ β β β | |
2 | plyconst 25711 | . . . 4 β’ ((β β β β§ π΄ β β) β (β Γ {π΄}) β (Polyββ)) | |
3 | 1, 2 | mpan 688 | . . 3 β’ (π΄ β β β (β Γ {π΄}) β (Polyββ)) |
4 | 0nn0 12483 | . . . 4 β’ 0 β β0 | |
5 | 4 | a1i 11 | . . 3 β’ (π΄ β β β 0 β β0) |
6 | simpl 483 | . . 3 β’ ((π΄ β β β§ π β (0...0)) β π΄ β β) | |
7 | fconstmpt 5736 | . . . 4 β’ (β Γ {π΄}) = (π§ β β β¦ π΄) | |
8 | 0z 12565 | . . . . . . 7 β’ 0 β β€ | |
9 | exp0 14027 | . . . . . . . . . 10 β’ (π§ β β β (π§β0) = 1) | |
10 | 9 | oveq2d 7421 | . . . . . . . . 9 β’ (π§ β β β (π΄ Β· (π§β0)) = (π΄ Β· 1)) |
11 | mulrid 11208 | . . . . . . . . 9 β’ (π΄ β β β (π΄ Β· 1) = π΄) | |
12 | 10, 11 | sylan9eqr 2794 | . . . . . . . 8 β’ ((π΄ β β β§ π§ β β) β (π΄ Β· (π§β0)) = π΄) |
13 | simpl 483 | . . . . . . . 8 β’ ((π΄ β β β§ π§ β β) β π΄ β β) | |
14 | 12, 13 | eqeltrd 2833 | . . . . . . 7 β’ ((π΄ β β β§ π§ β β) β (π΄ Β· (π§β0)) β β) |
15 | oveq2 7413 | . . . . . . . . 9 β’ (π = 0 β (π§βπ) = (π§β0)) | |
16 | 15 | oveq2d 7421 | . . . . . . . 8 β’ (π = 0 β (π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
17 | 16 | fsum1 15689 | . . . . . . 7 β’ ((0 β β€ β§ (π΄ Β· (π§β0)) β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
18 | 8, 14, 17 | sylancr 587 | . . . . . 6 β’ ((π΄ β β β§ π§ β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
19 | 18, 12 | eqtrd 2772 | . . . . 5 β’ ((π΄ β β β§ π§ β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = π΄) |
20 | 19 | mpteq2dva 5247 | . . . 4 β’ (π΄ β β β (π§ β β β¦ Ξ£π β (0...0)(π΄ Β· (π§βπ))) = (π§ β β β¦ π΄)) |
21 | 7, 20 | eqtr4id 2791 | . . 3 β’ (π΄ β β β (β Γ {π΄}) = (π§ β β β¦ Ξ£π β (0...0)(π΄ Β· (π§βπ)))) |
22 | 3, 5, 6, 21 | dgrle 25748 | . 2 β’ (π΄ β β β (degβ(β Γ {π΄})) β€ 0) |
23 | dgrcl 25738 | . . 3 β’ ((β Γ {π΄}) β (Polyββ) β (degβ(β Γ {π΄})) β β0) | |
24 | nn0le0eq0 12496 | . . 3 β’ ((degβ(β Γ {π΄})) β β0 β ((degβ(β Γ {π΄})) β€ 0 β (degβ(β Γ {π΄})) = 0)) | |
25 | 3, 23, 24 | 3syl 18 | . 2 β’ (π΄ β β β ((degβ(β Γ {π΄})) β€ 0 β (degβ(β Γ {π΄})) = 0)) |
26 | 22, 25 | mpbid 231 | 1 β’ (π΄ β β β (degβ(β Γ {π΄})) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3947 {csn 4627 class class class wbr 5147 β¦ cmpt 5230 Γ cxp 5673 βcfv 6540 (class class class)co 7405 βcc 11104 0cc0 11106 1c1 11107 Β· cmul 11111 β€ cle 11245 β0cn0 12468 β€cz 12554 ...cfz 13480 βcexp 14023 Ξ£csu 15628 Polycply 25689 degcdgr 25692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 df-0p 25178 df-ply 25693 df-coe 25695 df-dgr 25696 |
This theorem is referenced by: 0dgrb 25751 coemulc 25760 dgr0 25767 dgrmulc 25776 dgrcolem2 25779 plyremlem 25808 vieta1lem2 25815 |
Copyright terms: Public domain | W3C validator |