Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0dgr | Structured version Visualization version GIF version |
Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
0dgr | ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3947 | . . . 4 ⊢ ℂ ⊆ ℂ | |
2 | plyconst 25348 | . . . 4 ⊢ ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ)) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ)) |
4 | 0nn0 12231 | . . . 4 ⊢ 0 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
6 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...0)) → 𝐴 ∈ ℂ) | |
7 | fconstmpt 5648 | . . . 4 ⊢ (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴) | |
8 | 0z 12313 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
9 | exp0 13767 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℂ → (𝑧↑0) = 1) | |
10 | 9 | oveq2d 7284 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℂ → (𝐴 · (𝑧↑0)) = (𝐴 · 1)) |
11 | mulid1 10957 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
12 | 10, 11 | sylan9eqr 2801 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) = 𝐴) |
13 | simpl 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
14 | 12, 13 | eqeltrd 2840 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) ∈ ℂ) |
15 | oveq2 7276 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑧↑𝑘) = (𝑧↑0)) | |
16 | 15 | oveq2d 7284 | . . . . . . . 8 ⊢ (𝑘 = 0 → (𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
17 | 16 | fsum1 15440 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ (𝐴 · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
18 | 8, 14, 17 | sylancr 586 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
19 | 18, 12 | eqtrd 2779 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = 𝐴) |
20 | 19 | mpteq2dva 5178 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ 𝐴)) |
21 | 7, 20 | eqtr4id 2798 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)))) |
22 | 3, 5, 6, 21 | dgrle 25385 | . 2 ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) ≤ 0) |
23 | dgrcl 25375 | . . 3 ⊢ ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → (deg‘(ℂ × {𝐴})) ∈ ℕ0) | |
24 | nn0le0eq0 12244 | . . 3 ⊢ ((deg‘(ℂ × {𝐴})) ∈ ℕ0 → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0)) | |
25 | 3, 23, 24 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ℂ → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0)) |
26 | 22, 25 | mpbid 231 | 1 ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 {csn 4566 class class class wbr 5078 ↦ cmpt 5161 × cxp 5586 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 · cmul 10860 ≤ cle 10994 ℕ0cn0 12216 ℤcz 12302 ...cfz 13221 ↑cexp 13763 Σcsu 15378 Polycply 25326 degcdgr 25329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-fl 13493 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-rlim 15179 df-sum 15379 df-0p 24815 df-ply 25330 df-coe 25332 df-dgr 25333 |
This theorem is referenced by: 0dgrb 25388 coemulc 25397 dgr0 25404 dgrmulc 25413 dgrcolem2 25416 plyremlem 25445 vieta1lem2 25452 |
Copyright terms: Public domain | W3C validator |