Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0dgr | Structured version Visualization version GIF version |
Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
0dgr | ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3948 | . . . 4 ⊢ ℂ ⊆ ℂ | |
2 | plyconst 25412 | . . . 4 ⊢ ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ)) | |
3 | 1, 2 | mpan 688 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ)) |
4 | 0nn0 12294 | . . . 4 ⊢ 0 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
6 | simpl 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...0)) → 𝐴 ∈ ℂ) | |
7 | fconstmpt 5660 | . . . 4 ⊢ (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴) | |
8 | 0z 12376 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
9 | exp0 13832 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℂ → (𝑧↑0) = 1) | |
10 | 9 | oveq2d 7323 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℂ → (𝐴 · (𝑧↑0)) = (𝐴 · 1)) |
11 | mulid1 11019 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
12 | 10, 11 | sylan9eqr 2798 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) = 𝐴) |
13 | simpl 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
14 | 12, 13 | eqeltrd 2837 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) ∈ ℂ) |
15 | oveq2 7315 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑧↑𝑘) = (𝑧↑0)) | |
16 | 15 | oveq2d 7323 | . . . . . . . 8 ⊢ (𝑘 = 0 → (𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
17 | 16 | fsum1 15504 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ (𝐴 · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
18 | 8, 14, 17 | sylancr 588 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
19 | 18, 12 | eqtrd 2776 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = 𝐴) |
20 | 19 | mpteq2dva 5181 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ 𝐴)) |
21 | 7, 20 | eqtr4id 2795 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)))) |
22 | 3, 5, 6, 21 | dgrle 25449 | . 2 ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) ≤ 0) |
23 | dgrcl 25439 | . . 3 ⊢ ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → (deg‘(ℂ × {𝐴})) ∈ ℕ0) | |
24 | nn0le0eq0 12307 | . . 3 ⊢ ((deg‘(ℂ × {𝐴})) ∈ ℕ0 → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0)) | |
25 | 3, 23, 24 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ℂ → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0)) |
26 | 22, 25 | mpbid 231 | 1 ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 {csn 4565 class class class wbr 5081 ↦ cmpt 5164 × cxp 5598 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 0cc0 10917 1c1 10918 · cmul 10922 ≤ cle 11056 ℕ0cn0 12279 ℤcz 12365 ...cfz 13285 ↑cexp 13828 Σcsu 15442 Polycply 25390 degcdgr 25393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-fz 13286 df-fzo 13429 df-fl 13558 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-rlim 15243 df-sum 15443 df-0p 24879 df-ply 25394 df-coe 25396 df-dgr 25397 |
This theorem is referenced by: 0dgrb 25452 coemulc 25461 dgr0 25468 dgrmulc 25477 dgrcolem2 25480 plyremlem 25509 vieta1lem2 25516 |
Copyright terms: Public domain | W3C validator |