![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dgr | Structured version Visualization version GIF version |
Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
0dgr | β’ (π΄ β β β (degβ(β Γ {π΄})) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3997 | . . . 4 β’ β β β | |
2 | plyconst 26062 | . . . 4 β’ ((β β β β§ π΄ β β) β (β Γ {π΄}) β (Polyββ)) | |
3 | 1, 2 | mpan 687 | . . 3 β’ (π΄ β β β (β Γ {π΄}) β (Polyββ)) |
4 | 0nn0 12485 | . . . 4 β’ 0 β β0 | |
5 | 4 | a1i 11 | . . 3 β’ (π΄ β β β 0 β β0) |
6 | simpl 482 | . . 3 β’ ((π΄ β β β§ π β (0...0)) β π΄ β β) | |
7 | fconstmpt 5729 | . . . 4 β’ (β Γ {π΄}) = (π§ β β β¦ π΄) | |
8 | 0z 12567 | . . . . . . 7 β’ 0 β β€ | |
9 | exp0 14029 | . . . . . . . . . 10 β’ (π§ β β β (π§β0) = 1) | |
10 | 9 | oveq2d 7418 | . . . . . . . . 9 β’ (π§ β β β (π΄ Β· (π§β0)) = (π΄ Β· 1)) |
11 | mulrid 11210 | . . . . . . . . 9 β’ (π΄ β β β (π΄ Β· 1) = π΄) | |
12 | 10, 11 | sylan9eqr 2786 | . . . . . . . 8 β’ ((π΄ β β β§ π§ β β) β (π΄ Β· (π§β0)) = π΄) |
13 | simpl 482 | . . . . . . . 8 β’ ((π΄ β β β§ π§ β β) β π΄ β β) | |
14 | 12, 13 | eqeltrd 2825 | . . . . . . 7 β’ ((π΄ β β β§ π§ β β) β (π΄ Β· (π§β0)) β β) |
15 | oveq2 7410 | . . . . . . . . 9 β’ (π = 0 β (π§βπ) = (π§β0)) | |
16 | 15 | oveq2d 7418 | . . . . . . . 8 β’ (π = 0 β (π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
17 | 16 | fsum1 15691 | . . . . . . 7 β’ ((0 β β€ β§ (π΄ Β· (π§β0)) β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
18 | 8, 14, 17 | sylancr 586 | . . . . . 6 β’ ((π΄ β β β§ π§ β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
19 | 18, 12 | eqtrd 2764 | . . . . 5 β’ ((π΄ β β β§ π§ β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = π΄) |
20 | 19 | mpteq2dva 5239 | . . . 4 β’ (π΄ β β β (π§ β β β¦ Ξ£π β (0...0)(π΄ Β· (π§βπ))) = (π§ β β β¦ π΄)) |
21 | 7, 20 | eqtr4id 2783 | . . 3 β’ (π΄ β β β (β Γ {π΄}) = (π§ β β β¦ Ξ£π β (0...0)(π΄ Β· (π§βπ)))) |
22 | 3, 5, 6, 21 | dgrle 26099 | . 2 β’ (π΄ β β β (degβ(β Γ {π΄})) β€ 0) |
23 | dgrcl 26089 | . . 3 β’ ((β Γ {π΄}) β (Polyββ) β (degβ(β Γ {π΄})) β β0) | |
24 | nn0le0eq0 12498 | . . 3 β’ ((degβ(β Γ {π΄})) β β0 β ((degβ(β Γ {π΄})) β€ 0 β (degβ(β Γ {π΄})) = 0)) | |
25 | 3, 23, 24 | 3syl 18 | . 2 β’ (π΄ β β β ((degβ(β Γ {π΄})) β€ 0 β (degβ(β Γ {π΄})) = 0)) |
26 | 22, 25 | mpbid 231 | 1 β’ (π΄ β β β (degβ(β Γ {π΄})) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3941 {csn 4621 class class class wbr 5139 β¦ cmpt 5222 Γ cxp 5665 βcfv 6534 (class class class)co 7402 βcc 11105 0cc0 11107 1c1 11108 Β· cmul 11112 β€ cle 11247 β0cn0 12470 β€cz 12556 ...cfz 13482 βcexp 14025 Ξ£csu 15630 Polycply 26040 degcdgr 26043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-n0 12471 df-z 12557 df-uz 12821 df-rp 12973 df-fz 13483 df-fzo 13626 df-fl 13755 df-seq 13965 df-exp 14026 df-hash 14289 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-clim 15430 df-rlim 15431 df-sum 15631 df-0p 25523 df-ply 26044 df-coe 26046 df-dgr 26047 |
This theorem is referenced by: 0dgrb 26102 coemulc 26111 dgr0 26119 dgrmulc 26128 dgrcolem2 26131 plyremlem 26160 vieta1lem2 26167 |
Copyright terms: Public domain | W3C validator |