MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dgr Structured version   Visualization version   GIF version

Theorem 0dgr 26166
Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
0dgr (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)

Proof of Theorem 0dgr
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3960 . . . 4 ℂ ⊆ ℂ
2 plyconst 26127 . . . 4 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
31, 2mpan 690 . . 3 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
4 0nn0 12417 . . . 4 0 ∈ ℕ0
54a1i 11 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℕ0)
6 simpl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...0)) → 𝐴 ∈ ℂ)
7 fconstmpt 5685 . . . 4 (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴)
8 0z 12500 . . . . . . 7 0 ∈ ℤ
9 exp0 13990 . . . . . . . . . 10 (𝑧 ∈ ℂ → (𝑧↑0) = 1)
109oveq2d 7369 . . . . . . . . 9 (𝑧 ∈ ℂ → (𝐴 · (𝑧↑0)) = (𝐴 · 1))
11 mulrid 11132 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
1210, 11sylan9eqr 2786 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) = 𝐴)
13 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1412, 13eqeltrd 2828 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) ∈ ℂ)
15 oveq2 7361 . . . . . . . . 9 (𝑘 = 0 → (𝑧𝑘) = (𝑧↑0))
1615oveq2d 7369 . . . . . . . 8 (𝑘 = 0 → (𝐴 · (𝑧𝑘)) = (𝐴 · (𝑧↑0)))
1716fsum1 15672 . . . . . . 7 ((0 ∈ ℤ ∧ (𝐴 · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘)) = (𝐴 · (𝑧↑0)))
188, 14, 17sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘)) = (𝐴 · (𝑧↑0)))
1918, 12eqtrd 2764 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘)) = 𝐴)
2019mpteq2dva 5188 . . . 4 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ 𝐴))
217, 20eqtr4id 2783 . . 3 (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧𝑘))))
223, 5, 6, 21dgrle 26164 . 2 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) ≤ 0)
23 dgrcl 26154 . . 3 ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → (deg‘(ℂ × {𝐴})) ∈ ℕ0)
24 nn0le0eq0 12430 . . 3 ((deg‘(ℂ × {𝐴})) ∈ ℕ0 → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0))
253, 23, 243syl 18 . 2 (𝐴 ∈ ℂ → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0))
2622, 25mpbid 232 1 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3905  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   · cmul 11033  cle 11169  0cn0 12402  cz 12489  ...cfz 13428  cexp 13986  Σcsu 15611  Polycply 26105  degcdgr 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109  df-coe 26111  df-dgr 26112
This theorem is referenced by:  0dgrb  26167  coemulc  26176  dgr0  26184  dgrmulc  26193  dgrcolem2  26196  plyremlem  26228  vieta1lem2  26235  cjnpoly  46874
  Copyright terms: Public domain W3C validator