Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0dgr | Structured version Visualization version GIF version |
Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
0dgr | ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3942 | . . . 4 ⊢ ℂ ⊆ ℂ | |
2 | plyconst 25377 | . . . 4 ⊢ ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ)) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ (Poly‘ℂ)) |
4 | 0nn0 12258 | . . . 4 ⊢ 0 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
6 | simpl 483 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...0)) → 𝐴 ∈ ℂ) | |
7 | fconstmpt 5644 | . . . 4 ⊢ (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ 𝐴) | |
8 | 0z 12340 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
9 | exp0 13796 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℂ → (𝑧↑0) = 1) | |
10 | 9 | oveq2d 7283 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℂ → (𝐴 · (𝑧↑0)) = (𝐴 · 1)) |
11 | mulid1 10983 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
12 | 10, 11 | sylan9eqr 2800 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) = 𝐴) |
13 | simpl 483 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
14 | 12, 13 | eqeltrd 2839 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝐴 · (𝑧↑0)) ∈ ℂ) |
15 | oveq2 7275 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑧↑𝑘) = (𝑧↑0)) | |
16 | 15 | oveq2d 7283 | . . . . . . . 8 ⊢ (𝑘 = 0 → (𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
17 | 16 | fsum1 15469 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ (𝐴 · (𝑧↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
18 | 8, 14, 17 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = (𝐴 · (𝑧↑0))) |
19 | 18, 12 | eqtrd 2778 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)) = 𝐴) |
20 | 19 | mpteq2dva 5173 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ 𝐴)) |
21 | 7, 20 | eqtr4id 2797 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(𝐴 · (𝑧↑𝑘)))) |
22 | 3, 5, 6, 21 | dgrle 25414 | . 2 ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) ≤ 0) |
23 | dgrcl 25404 | . . 3 ⊢ ((ℂ × {𝐴}) ∈ (Poly‘ℂ) → (deg‘(ℂ × {𝐴})) ∈ ℕ0) | |
24 | nn0le0eq0 12271 | . . 3 ⊢ ((deg‘(ℂ × {𝐴})) ∈ ℕ0 → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0)) | |
25 | 3, 23, 24 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ℂ → ((deg‘(ℂ × {𝐴})) ≤ 0 ↔ (deg‘(ℂ × {𝐴})) = 0)) |
26 | 22, 25 | mpbid 231 | 1 ⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3886 {csn 4561 class class class wbr 5073 ↦ cmpt 5156 × cxp 5582 ‘cfv 6426 (class class class)co 7267 ℂcc 10879 0cc0 10881 1c1 10882 · cmul 10886 ≤ cle 11020 ℕ0cn0 12243 ℤcz 12329 ...cfz 13249 ↑cexp 13792 Σcsu 15407 Polycply 25355 degcdgr 25358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-pm 8605 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-inf 9189 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-fz 13250 df-fzo 13393 df-fl 13522 df-seq 13732 df-exp 13793 df-hash 14055 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-clim 15207 df-rlim 15208 df-sum 15408 df-0p 24844 df-ply 25359 df-coe 25361 df-dgr 25362 |
This theorem is referenced by: 0dgrb 25417 coemulc 25426 dgr0 25433 dgrmulc 25442 dgrcolem2 25445 plyremlem 25474 vieta1lem2 25481 |
Copyright terms: Public domain | W3C validator |