![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dgr | Structured version Visualization version GIF version |
Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
0dgr | β’ (π΄ β β β (degβ(β Γ {π΄})) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4000 | . . . 4 β’ β β β | |
2 | plyconst 26133 | . . . 4 β’ ((β β β β§ π΄ β β) β (β Γ {π΄}) β (Polyββ)) | |
3 | 1, 2 | mpan 689 | . . 3 β’ (π΄ β β β (β Γ {π΄}) β (Polyββ)) |
4 | 0nn0 12511 | . . . 4 β’ 0 β β0 | |
5 | 4 | a1i 11 | . . 3 β’ (π΄ β β β 0 β β0) |
6 | simpl 482 | . . 3 β’ ((π΄ β β β§ π β (0...0)) β π΄ β β) | |
7 | fconstmpt 5734 | . . . 4 β’ (β Γ {π΄}) = (π§ β β β¦ π΄) | |
8 | 0z 12593 | . . . . . . 7 β’ 0 β β€ | |
9 | exp0 14056 | . . . . . . . . . 10 β’ (π§ β β β (π§β0) = 1) | |
10 | 9 | oveq2d 7430 | . . . . . . . . 9 β’ (π§ β β β (π΄ Β· (π§β0)) = (π΄ Β· 1)) |
11 | mulrid 11236 | . . . . . . . . 9 β’ (π΄ β β β (π΄ Β· 1) = π΄) | |
12 | 10, 11 | sylan9eqr 2790 | . . . . . . . 8 β’ ((π΄ β β β§ π§ β β) β (π΄ Β· (π§β0)) = π΄) |
13 | simpl 482 | . . . . . . . 8 β’ ((π΄ β β β§ π§ β β) β π΄ β β) | |
14 | 12, 13 | eqeltrd 2829 | . . . . . . 7 β’ ((π΄ β β β§ π§ β β) β (π΄ Β· (π§β0)) β β) |
15 | oveq2 7422 | . . . . . . . . 9 β’ (π = 0 β (π§βπ) = (π§β0)) | |
16 | 15 | oveq2d 7430 | . . . . . . . 8 β’ (π = 0 β (π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
17 | 16 | fsum1 15719 | . . . . . . 7 β’ ((0 β β€ β§ (π΄ Β· (π§β0)) β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
18 | 8, 14, 17 | sylancr 586 | . . . . . 6 β’ ((π΄ β β β§ π§ β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = (π΄ Β· (π§β0))) |
19 | 18, 12 | eqtrd 2768 | . . . . 5 β’ ((π΄ β β β§ π§ β β) β Ξ£π β (0...0)(π΄ Β· (π§βπ)) = π΄) |
20 | 19 | mpteq2dva 5242 | . . . 4 β’ (π΄ β β β (π§ β β β¦ Ξ£π β (0...0)(π΄ Β· (π§βπ))) = (π§ β β β¦ π΄)) |
21 | 7, 20 | eqtr4id 2787 | . . 3 β’ (π΄ β β β (β Γ {π΄}) = (π§ β β β¦ Ξ£π β (0...0)(π΄ Β· (π§βπ)))) |
22 | 3, 5, 6, 21 | dgrle 26170 | . 2 β’ (π΄ β β β (degβ(β Γ {π΄})) β€ 0) |
23 | dgrcl 26160 | . . 3 β’ ((β Γ {π΄}) β (Polyββ) β (degβ(β Γ {π΄})) β β0) | |
24 | nn0le0eq0 12524 | . . 3 β’ ((degβ(β Γ {π΄})) β β0 β ((degβ(β Γ {π΄})) β€ 0 β (degβ(β Γ {π΄})) = 0)) | |
25 | 3, 23, 24 | 3syl 18 | . 2 β’ (π΄ β β β ((degβ(β Γ {π΄})) β€ 0 β (degβ(β Γ {π΄})) = 0)) |
26 | 22, 25 | mpbid 231 | 1 β’ (π΄ β β β (degβ(β Γ {π΄})) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 β wss 3945 {csn 4624 class class class wbr 5142 β¦ cmpt 5225 Γ cxp 5670 βcfv 6542 (class class class)co 7414 βcc 11130 0cc0 11132 1c1 11133 Β· cmul 11137 β€ cle 11273 β0cn0 12496 β€cz 12582 ...cfz 13510 βcexp 14052 Ξ£csu 15658 Polycply 26111 degcdgr 26114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-fl 13783 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-rlim 15459 df-sum 15659 df-0p 25592 df-ply 26115 df-coe 26117 df-dgr 26118 |
This theorem is referenced by: 0dgrb 26173 coemulc 26182 dgr0 26190 dgrmulc 26199 dgrcolem2 26202 plyremlem 26232 vieta1lem2 26239 |
Copyright terms: Public domain | W3C validator |