MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg2 Structured version   Visualization version   GIF version

Theorem fsumcvg2 15775
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumsers.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumsers.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumsers.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsers.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fsumcvg2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcvg2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2908 . . . 4 𝑚if(𝑘𝐴, 𝐵, 0)
2 nfv 1913 . . . . 5 𝑘 𝑚𝐴
3 nfcsb1v 3946 . . . . 5 𝑘𝑚 / 𝑘𝐵
4 nfcv 2908 . . . . 5 𝑘0
52, 3, 4nfif 4578 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0)
6 eleq1w 2827 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
7 csbeq1a 3935 . . . . 5 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
86, 7ifbieq1d 4572 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
91, 5, 8cbvmpt 5277 . . 3 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑚 ∈ ℤ ↦ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
10 fsumsers.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1110ralrimiva 3152 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
123nfel1 2925 . . . . 5 𝑘𝑚 / 𝑘𝐵 ∈ ℂ
137eleq1d 2829 . . . . 5 (𝑘 = 𝑚 → (𝐵 ∈ ℂ ↔ 𝑚 / 𝑘𝐵 ∈ ℂ))
1412, 13rspc 3623 . . . 4 (𝑚𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑚 / 𝑘𝐵 ∈ ℂ))
1511, 14mpan9 506 . . 3 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
16 fsumsers.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
17 fsumsers.4 . . 3 (𝜑𝐴 ⊆ (𝑀...𝑁))
189, 15, 16, 17fsumcvg 15760 . 2 (𝜑 → seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))) ⇝ (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)))‘𝑁))
19 eluzel2 12908 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2016, 19syl 17 . . 3 (𝜑𝑀 ∈ ℤ)
21 fsumsers.1 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
22 eluzelz 12913 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
23 iftrue 4554 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
2423adantl 481 . . . . . . . . . 10 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
2524, 10eqeltrd 2844 . . . . . . . . 9 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
2625ex 412 . . . . . . . 8 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
27 iffalse 4557 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
28 0cn 11282 . . . . . . . . 9 0 ∈ ℂ
2927, 28eqeltrdi 2852 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
3026, 29pm2.61d1 180 . . . . . . 7 (𝜑 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
31 eqid 2740 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
3231fvmpt2 7040 . . . . . . 7 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
3322, 30, 32syl2anr 596 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
3421, 33eqtr4d 2783 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
3534ralrimiva 3152 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
36 nffvmpt1 6931 . . . . . 6 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
3736nfeq2 2926 . . . . 5 𝑘(𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
38 fveq2 6920 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
39 fveq2 6920 . . . . . 6 (𝑘 = 𝑛 → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
4038, 39eqeq12d 2756 . . . . 5 (𝑘 = 𝑛 → ((𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) ↔ (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
4137, 40rspc 3623 . . . 4 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
4235, 41mpan9 506 . . 3 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
4320, 42seqfeq 14078 . 2 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))))
4443fveq1d 6922 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)))‘𝑁))
4518, 43, 443brtr4d 5198 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  csb 3921  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   + caddc 11187  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  fsumsers  15776  fsumcvg3  15777  ef0lem  16126
  Copyright terms: Public domain W3C validator