Step | Hyp | Ref
| Expression |
1 | | pcmpt.2 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0) |
2 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑚 𝐴 ∈
ℕ0 |
3 | | nfcsb1v 3853 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 |
4 | 3 | nfel1 2922 |
. . . . . . . . . 10
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 ∈ ℕ0 |
5 | | csbeq1a 3842 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
6 | 5 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐴 ∈ ℕ0 ↔
⦋𝑚 / 𝑛⦌𝐴 ∈
ℕ0)) |
7 | 2, 4, 6 | cbvralw 3363 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℙ 𝐴 ∈
ℕ0 ↔ ∀𝑚 ∈ ℙ ⦋𝑚 / 𝑛⦌𝐴 ∈
ℕ0) |
8 | 1, 7 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑚 ∈ ℙ ⦋𝑚 / 𝑛⦌𝐴 ∈
ℕ0) |
9 | | csbeq1 3831 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑝 → ⦋𝑚 / 𝑛⦌𝐴 = ⦋𝑝 / 𝑛⦌𝐴) |
10 | 9 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑚 = 𝑝 → (⦋𝑚 / 𝑛⦌𝐴 ∈ ℕ0 ↔
⦋𝑝 / 𝑛⦌𝐴 ∈
ℕ0)) |
11 | 10 | rspcv 3547 |
. . . . . . . 8
⊢ (𝑝 ∈ ℙ →
(∀𝑚 ∈ ℙ
⦋𝑚 / 𝑛⦌𝐴 ∈ ℕ0 →
⦋𝑝 / 𝑛⦌𝐴 ∈
ℕ0)) |
12 | 8, 11 | mpan9 506 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → ⦋𝑝 / 𝑛⦌𝐴 ∈
ℕ0) |
13 | 12 | nn0ge0d 12226 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 0 ≤
⦋𝑝 / 𝑛⦌𝐴) |
14 | | 0le0 12004 |
. . . . . 6
⊢ 0 ≤
0 |
15 | | breq2 5074 |
. . . . . . 7
⊢
(⦋𝑝 /
𝑛⦌𝐴 = if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0) → (0 ≤ ⦋𝑝 / 𝑛⦌𝐴 ↔ 0 ≤ if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0))) |
16 | | breq2 5074 |
. . . . . . 7
⊢ (0 =
if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0) → (0 ≤ 0 ↔ 0 ≤
if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0))) |
17 | 15, 16 | ifboth 4495 |
. . . . . 6
⊢ ((0 ≤
⦋𝑝 / 𝑛⦌𝐴 ∧ 0 ≤ 0) → 0 ≤ if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0)) |
18 | 13, 14, 17 | sylancl 585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 0 ≤ if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0)) |
19 | | pcmpt.1 |
. . . . . . 7
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
20 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑚if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) |
21 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑚 ∈ ℙ |
22 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑚 |
23 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛↑ |
24 | 22, 23, 3 | nfov 7285 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑚↑⦋𝑚 / 𝑛⦌𝐴) |
25 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑛1 |
26 | 21, 24, 25 | nfif 4486 |
. . . . . . . 8
⊢
Ⅎ𝑛if(𝑚 ∈ ℙ, (𝑚↑⦋𝑚 / 𝑛⦌𝐴), 1) |
27 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛 ∈ ℙ ↔ 𝑚 ∈ ℙ)) |
28 | | id 22 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → 𝑛 = 𝑚) |
29 | 28, 5 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛↑𝐴) = (𝑚↑⦋𝑚 / 𝑛⦌𝐴)) |
30 | 27, 29 | ifbieq1d 4480 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1) = if(𝑚 ∈ ℙ, (𝑚↑⦋𝑚 / 𝑛⦌𝐴), 1)) |
31 | 20, 26, 30 | cbvmpt 5181 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚↑⦋𝑚 / 𝑛⦌𝐴), 1)) |
32 | 19, 31 | eqtri 2766 |
. . . . . 6
⊢ 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚↑⦋𝑚 / 𝑛⦌𝐴), 1)) |
33 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → ∀𝑚 ∈ ℙ
⦋𝑚 / 𝑛⦌𝐴 ∈
ℕ0) |
34 | | pcmpt.3 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
35 | 34 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ) |
36 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
37 | | pcmptdvds.3 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) |
38 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 𝑀 ∈ (ℤ≥‘𝑁)) |
39 | 32, 33, 35, 36, 9, 38 | pcmpt2 16522 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑝 ≤ 𝑀 ∧ ¬ 𝑝 ≤ 𝑁), ⦋𝑝 / 𝑛⦌𝐴, 0)) |
40 | 18, 39 | breqtrrd 5098 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))) |
41 | 40 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))) |
42 | 19, 1 | pcmptcl 16520 |
. . . . . . . 8
⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( ·
, 𝐹):ℕ⟶ℕ)) |
43 | 42 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
44 | | eluznn 12587 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
45 | 34, 37, 44 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
46 | 43, 45 | ffvelrnd 6944 |
. . . . . 6
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ) |
47 | 46 | nnzd 12354 |
. . . . 5
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ) |
48 | 43, 34 | ffvelrnd 6944 |
. . . . 5
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) |
49 | | znq 12621 |
. . . . 5
⊢ (((seq1(
· , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1(
· , 𝐹)‘𝑁) ∈ ℕ) → ((seq1(
· , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ) |
50 | 47, 48, 49 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ) |
51 | | pcz 16510 |
. . . 4
⊢ (((seq1(
· , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ → (((seq1( · ,
𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))) |
52 | 50, 51 | syl 17 |
. . 3
⊢ (𝜑 → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))) |
53 | 41, 52 | mpbird 256 |
. 2
⊢ (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ) |
54 | 48 | nnzd 12354 |
. . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℤ) |
55 | 48 | nnne0d 11953 |
. . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ≠ 0) |
56 | | dvdsval2 15894 |
. . 3
⊢ (((seq1(
· , 𝐹)‘𝑁) ∈ ℤ ∧ (seq1(
· , 𝐹)‘𝑁) ≠ 0 ∧ (seq1( · ,
𝐹)‘𝑀) ∈ ℤ) → ((seq1( · ,
𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)) |
57 | 54, 55, 47, 56 | syl3anc 1369 |
. 2
⊢ (𝜑 → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)) |
58 | 53, 57 | mpbird 256 |
1
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀)) |