MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmptdvds Structured version   Visualization version   GIF version

Theorem pcmptdvds 16937
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmptdvds.3 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmptdvds (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))

Proof of Theorem pcmptdvds
Dummy variables 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
2 nfv 1914 . . . . . . . . . 10 𝑚 𝐴 ∈ ℕ0
3 nfcsb1v 3936 . . . . . . . . . . 11 𝑛𝑚 / 𝑛𝐴
43nfel1 2922 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴 ∈ ℕ0
5 csbeq1a 3925 . . . . . . . . . . 11 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
65eleq1d 2826 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 ∈ ℕ0𝑚 / 𝑛𝐴 ∈ ℕ0))
72, 4, 6cbvralw 3306 . . . . . . . . 9 (∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ↔ ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
81, 7sylib 218 . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
9 csbeq1 3914 . . . . . . . . . 10 (𝑚 = 𝑝𝑚 / 𝑛𝐴 = 𝑝 / 𝑛𝐴)
109eleq1d 2826 . . . . . . . . 9 (𝑚 = 𝑝 → (𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
1110rspcv 3621 . . . . . . . 8 (𝑝 ∈ ℙ → (∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0𝑝 / 𝑛𝐴 ∈ ℕ0))
128, 11mpan9 506 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 / 𝑛𝐴 ∈ ℕ0)
1312nn0ge0d 12597 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 0 ≤ 𝑝 / 𝑛𝐴)
14 0le0 12374 . . . . . 6 0 ≤ 0
15 breq2 5155 . . . . . . 7 (𝑝 / 𝑛𝐴 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 𝑝 / 𝑛𝐴 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
16 breq2 5155 . . . . . . 7 (0 = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0) → (0 ≤ 0 ↔ 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0)))
1715, 16ifboth 4573 . . . . . 6 ((0 ≤ 𝑝 / 𝑛𝐴 ∧ 0 ≤ 0) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
1813, 14, 17sylancl 586 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 0 ≤ if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
19 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
20 nfcv 2905 . . . . . . . 8 𝑚if(𝑛 ∈ ℙ, (𝑛𝐴), 1)
21 nfv 1914 . . . . . . . . 9 𝑛 𝑚 ∈ ℙ
22 nfcv 2905 . . . . . . . . . 10 𝑛𝑚
23 nfcv 2905 . . . . . . . . . 10 𝑛
2422, 23, 3nfov 7468 . . . . . . . . 9 𝑛(𝑚𝑚 / 𝑛𝐴)
25 nfcv 2905 . . . . . . . . 9 𝑛1
2621, 24, 25nfif 4564 . . . . . . . 8 𝑛if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1)
27 eleq1w 2824 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 ∈ ℙ ↔ 𝑚 ∈ ℙ))
28 id 22 . . . . . . . . . 10 (𝑛 = 𝑚𝑛 = 𝑚)
2928, 5oveq12d 7456 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛𝐴) = (𝑚𝑚 / 𝑛𝐴))
3027, 29ifbieq1d 4558 . . . . . . . 8 (𝑛 = 𝑚 → if(𝑛 ∈ ℙ, (𝑛𝐴), 1) = if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
3120, 26, 30cbvmpt 5262 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
3219, 31eqtri 2765 . . . . . 6 𝐹 = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (𝑚𝑚 / 𝑛𝐴), 1))
338adantr 480 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ∀𝑚 ∈ ℙ 𝑚 / 𝑛𝐴 ∈ ℕ0)
34 pcmpt.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
3534adantr 480 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
36 simpr 484 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
37 pcmptdvds.3 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑁))
3837adantr 480 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ (ℤ𝑁))
3932, 33, 35, 36, 9, 38pcmpt2 16936 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑝𝑀 ∧ ¬ 𝑝𝑁), 𝑝 / 𝑛𝐴, 0))
4018, 39breqtrrd 5179 . . . 4 ((𝜑𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
4140ralrimiva 3146 . . 3 (𝜑 → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))))
4219, 1pcmptcl 16934 . . . . . . . 8 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
4342simprd 495 . . . . . . 7 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
44 eluznn 12967 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
4534, 37, 44syl2anc 584 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
4643, 45ffvelcdmd 7112 . . . . . 6 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
4746nnzd 12647 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
4843, 34ffvelcdmd 7112 . . . . 5 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
49 znq 13001 . . . . 5 (((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
5047, 48, 49syl2anc 584 . . . 4 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ)
51 pcz 16924 . . . 4 (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℚ → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
5250, 51syl 17 . . 3 (𝜑 → (((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)))))
5341, 52mpbird 257 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ)
5448nnzd 12647 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℤ)
5548nnne0d 12323 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ≠ 0)
56 dvdsval2 16299 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑁) ≠ 0 ∧ (seq1( · , 𝐹)‘𝑀) ∈ ℤ) → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
5754, 55, 47, 56syl3anc 1372 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀) ↔ ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁)) ∈ ℤ))
5853, 57mpbird 257 1 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∥ (seq1( · , 𝐹)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wne 2940  wral 3061  csb 3911  ifcif 4534   class class class wbr 5151  cmpt 5234  wf 6565  cfv 6569  (class class class)co 7438  0cc0 11162  1c1 11163   · cmul 11167  cle 11303   / cdiv 11927  cn 12273  0cn0 12533  cz 12620  cuz 12885  cq 12997  seqcseq 14048  cexp 14108  cdvds 16296  cprime 16714   pCnt cpc 16879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-z 12621  df-uz 12886  df-q 12998  df-rp 13042  df-fz 13554  df-fl 13838  df-mod 13916  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-dvds 16297  df-gcd 16538  df-prm 16715  df-pc 16880
This theorem is referenced by:  bposlem6  27359
  Copyright terms: Public domain W3C validator