![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1fposd | Structured version Visualization version GIF version |
Description: Deduction form of i1fposd 25587. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
i1fposd.1 | β’ (π β (π₯ β β β¦ π΄) β dom β«1) |
Ref | Expression |
---|---|
i1fposd | β’ (π β (π₯ β β β¦ if(0 β€ π΄, π΄, 0)) β dom β«1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2897 | . . . . . 6 β’ β²π₯0 | |
2 | nfcv 2897 | . . . . . 6 β’ β²π₯ β€ | |
3 | nffvmpt1 6895 | . . . . . 6 β’ β²π₯((π₯ β β β¦ π΄)βπ¦) | |
4 | 1, 2, 3 | nfbr 5188 | . . . . 5 β’ β²π₯0 β€ ((π₯ β β β¦ π΄)βπ¦) |
5 | 4, 3, 1 | nfif 4553 | . . . 4 β’ β²π₯if(0 β€ ((π₯ β β β¦ π΄)βπ¦), ((π₯ β β β¦ π΄)βπ¦), 0) |
6 | nfcv 2897 | . . . 4 β’ β²π¦if(0 β€ ((π₯ β β β¦ π΄)βπ₯), ((π₯ β β β¦ π΄)βπ₯), 0) | |
7 | fveq2 6884 | . . . . . 6 β’ (π¦ = π₯ β ((π₯ β β β¦ π΄)βπ¦) = ((π₯ β β β¦ π΄)βπ₯)) | |
8 | 7 | breq2d 5153 | . . . . 5 β’ (π¦ = π₯ β (0 β€ ((π₯ β β β¦ π΄)βπ¦) β 0 β€ ((π₯ β β β¦ π΄)βπ₯))) |
9 | 8, 7 | ifbieq1d 4547 | . . . 4 β’ (π¦ = π₯ β if(0 β€ ((π₯ β β β¦ π΄)βπ¦), ((π₯ β β β¦ π΄)βπ¦), 0) = if(0 β€ ((π₯ β β β¦ π΄)βπ₯), ((π₯ β β β¦ π΄)βπ₯), 0)) |
10 | 5, 6, 9 | cbvmpt 5252 | . . 3 β’ (π¦ β β β¦ if(0 β€ ((π₯ β β β¦ π΄)βπ¦), ((π₯ β β β¦ π΄)βπ¦), 0)) = (π₯ β β β¦ if(0 β€ ((π₯ β β β¦ π΄)βπ₯), ((π₯ β β β¦ π΄)βπ₯), 0)) |
11 | simpr 484 | . . . . . . 7 β’ ((π β§ π₯ β β) β π₯ β β) | |
12 | i1fposd.1 | . . . . . . . . 9 β’ (π β (π₯ β β β¦ π΄) β dom β«1) | |
13 | i1ff 25555 | . . . . . . . . 9 β’ ((π₯ β β β¦ π΄) β dom β«1 β (π₯ β β β¦ π΄):ββΆβ) | |
14 | 12, 13 | syl 17 | . . . . . . . 8 β’ (π β (π₯ β β β¦ π΄):ββΆβ) |
15 | 14 | fvmptelcdm 7107 | . . . . . . 7 β’ ((π β§ π₯ β β) β π΄ β β) |
16 | eqid 2726 | . . . . . . . 8 β’ (π₯ β β β¦ π΄) = (π₯ β β β¦ π΄) | |
17 | 16 | fvmpt2 7002 | . . . . . . 7 β’ ((π₯ β β β§ π΄ β β) β ((π₯ β β β¦ π΄)βπ₯) = π΄) |
18 | 11, 15, 17 | syl2anc 583 | . . . . . 6 β’ ((π β§ π₯ β β) β ((π₯ β β β¦ π΄)βπ₯) = π΄) |
19 | 18 | breq2d 5153 | . . . . 5 β’ ((π β§ π₯ β β) β (0 β€ ((π₯ β β β¦ π΄)βπ₯) β 0 β€ π΄)) |
20 | 19, 18 | ifbieq1d 4547 | . . . 4 β’ ((π β§ π₯ β β) β if(0 β€ ((π₯ β β β¦ π΄)βπ₯), ((π₯ β β β¦ π΄)βπ₯), 0) = if(0 β€ π΄, π΄, 0)) |
21 | 20 | mpteq2dva 5241 | . . 3 β’ (π β (π₯ β β β¦ if(0 β€ ((π₯ β β β¦ π΄)βπ₯), ((π₯ β β β¦ π΄)βπ₯), 0)) = (π₯ β β β¦ if(0 β€ π΄, π΄, 0))) |
22 | 10, 21 | eqtrid 2778 | . 2 β’ (π β (π¦ β β β¦ if(0 β€ ((π₯ β β β¦ π΄)βπ¦), ((π₯ β β β¦ π΄)βπ¦), 0)) = (π₯ β β β¦ if(0 β€ π΄, π΄, 0))) |
23 | eqid 2726 | . . . 4 β’ (π¦ β β β¦ if(0 β€ ((π₯ β β β¦ π΄)βπ¦), ((π₯ β β β¦ π΄)βπ¦), 0)) = (π¦ β β β¦ if(0 β€ ((π₯ β β β¦ π΄)βπ¦), ((π₯ β β β¦ π΄)βπ¦), 0)) | |
24 | 23 | i1fpos 25586 | . . 3 β’ ((π₯ β β β¦ π΄) β dom β«1 β (π¦ β β β¦ if(0 β€ ((π₯ β β β¦ π΄)βπ¦), ((π₯ β β β¦ π΄)βπ¦), 0)) β dom β«1) |
25 | 12, 24 | syl 17 | . 2 β’ (π β (π¦ β β β¦ if(0 β€ ((π₯ β β β¦ π΄)βπ¦), ((π₯ β β β¦ π΄)βπ¦), 0)) β dom β«1) |
26 | 22, 25 | eqeltrrd 2828 | 1 β’ (π β (π₯ β β β¦ if(0 β€ π΄, π΄, 0)) β dom β«1) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 ifcif 4523 class class class wbr 5141 β¦ cmpt 5224 dom cdm 5669 βΆwf 6532 βcfv 6536 βcr 11108 0cc0 11109 β€ cle 11250 β«1citg1 25494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14030 df-hash 14293 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-clim 15435 df-sum 15636 df-rest 17374 df-topgen 17395 df-psmet 21227 df-xmet 21228 df-met 21229 df-bl 21230 df-mopn 21231 df-top 22746 df-topon 22763 df-bases 22799 df-cmp 23241 df-ovol 25343 df-vol 25344 df-mbf 25498 df-itg1 25499 |
This theorem is referenced by: i1fibl 25687 itgitg1 25688 |
Copyright terms: Public domain | W3C validator |