![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1fposd | Structured version Visualization version GIF version |
Description: Deduction form of i1fposd 24023. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
i1fposd.1 | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1) |
Ref | Expression |
---|---|
i1fposd | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0)) ∈ dom ∫1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2926 | . . . . . 6 ⊢ Ⅎ𝑥0 | |
2 | nfcv 2926 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
3 | nffvmpt1 6507 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦) | |
4 | 1, 2, 3 | nfbr 4972 | . . . . 5 ⊢ Ⅎ𝑥0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦) |
5 | 4, 3, 1 | nfif 4373 | . . . 4 ⊢ Ⅎ𝑥if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0) |
6 | nfcv 2926 | . . . 4 ⊢ Ⅎ𝑦if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0) | |
7 | fveq2 6496 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦) = ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥)) | |
8 | 7 | breq2d 4937 | . . . . 5 ⊢ (𝑦 = 𝑥 → (0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦) ↔ 0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥))) |
9 | 8, 7 | ifbieq1d 4367 | . . . 4 ⊢ (𝑦 = 𝑥 → if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0) = if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0)) |
10 | 5, 6, 9 | cbvmpt 5023 | . . 3 ⊢ (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0)) |
11 | simpr 477 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
12 | i1fposd.1 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1) | |
13 | i1ff 23992 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ 𝐴):ℝ⟶ℝ) | |
14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴):ℝ⟶ℝ) |
15 | 14 | fvmptelrn 6698 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
16 | eqid 2772 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ ↦ 𝐴) = (𝑥 ∈ ℝ ↦ 𝐴) | |
17 | 16 | fvmpt2 6603 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥) = 𝐴) |
18 | 11, 15, 17 | syl2anc 576 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥) = 𝐴) |
19 | 18 | breq2d 4937 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥) ↔ 0 ≤ 𝐴)) |
20 | 19, 18 | ifbieq1d 4367 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0) = if(0 ≤ 𝐴, 𝐴, 0)) |
21 | 20 | mpteq2dva 5018 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0))) |
22 | 10, 21 | syl5eq 2820 | . 2 ⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0))) |
23 | eqid 2772 | . . . 4 ⊢ (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) | |
24 | 23 | i1fpos 24022 | . . 3 ⊢ ((𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1 → (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) ∈ dom ∫1) |
25 | 12, 24 | syl 17 | . 2 ⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) ∈ dom ∫1) |
26 | 22, 25 | eqeltrrd 2861 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0)) ∈ dom ∫1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ifcif 4344 class class class wbr 4925 ↦ cmpt 5004 dom cdm 5403 ⟶wf 6181 ‘cfv 6185 ℝcr 10332 0cc0 10333 ≤ cle 10473 ∫1citg1 23931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-oadd 7907 df-er 8087 df-map 8206 df-pm 8207 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-fi 8668 df-sup 8699 df-inf 8700 df-oi 8767 df-dju 9122 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-q 12161 df-rp 12203 df-xneg 12322 df-xadd 12323 df-xmul 12324 df-ioo 12556 df-ico 12558 df-icc 12559 df-fz 12707 df-fzo 12848 df-fl 12975 df-seq 13183 df-exp 13243 df-hash 13504 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-clim 14704 df-sum 14902 df-rest 16550 df-topgen 16571 df-psmet 20251 df-xmet 20252 df-met 20253 df-bl 20254 df-mopn 20255 df-top 21218 df-topon 21235 df-bases 21270 df-cmp 21711 df-ovol 23780 df-vol 23781 df-mbf 23935 df-itg1 23936 |
This theorem is referenced by: i1fibl 24123 itgitg1 24124 |
Copyright terms: Public domain | W3C validator |