MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smcnlem Structured version   Visualization version   GIF version

Theorem smcnlem 29639
Description: Lemma for smcn 29640. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
smcn.c 𝐶 = (IndMet‘𝑈)
smcn.j 𝐽 = (MetOpen‘𝐶)
smcn.s 𝑆 = ( ·𝑠OLD𝑈)
smcn.k 𝐾 = (TopOpen‘ℂfld)
smcn.x 𝑋 = (BaseSet‘𝑈)
smcn.n 𝑁 = (normCV𝑈)
smcn.u 𝑈 ∈ NrmCVec
smcn.t 𝑇 = (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
Assertion
Ref Expression
smcnlem 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐶   𝐽,𝑟,𝑥,𝑦   𝑈,𝑟,𝑥,𝑦   𝐾,𝑟,𝑥,𝑦   𝑆,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑟)   𝑁(𝑥,𝑦,𝑟)

Proof of Theorem smcnlem
Dummy variables 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smcn.u . . 3 𝑈 ∈ NrmCVec
2 smcn.x . . . 4 𝑋 = (BaseSet‘𝑈)
3 smcn.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvsf 29561 . . 3 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × 𝑋)⟶𝑋)
51, 4ax-mp 5 . 2 𝑆:(ℂ × 𝑋)⟶𝑋
6 smcn.t . . . . . 6 𝑇 = (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
7 1rp 12919 . . . . . . . 8 1 ∈ ℝ+
8 simpr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 𝑦𝑋)
9 smcn.n . . . . . . . . . . . . 13 𝑁 = (normCV𝑈)
102, 9nvcl 29603 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
111, 8, 10sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
12 abscl 15163 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1312adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (abs‘𝑥) ∈ ℝ)
1411, 13readdcld 11184 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → ((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ)
152, 9nvge0 29615 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → 0 ≤ (𝑁𝑦))
161, 8, 15sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ (𝑁𝑦))
17 absge0 15172 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
1817adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ (abs‘𝑥))
1911, 13, 16, 18addge0d 11731 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ ((𝑁𝑦) + (abs‘𝑥)))
2014, 19ge0p1rpd 12987 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ+)
21 rpdivcl 12940 . . . . . . . . 9 (((((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ+𝑟 ∈ ℝ+) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
2220, 21sylan 580 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
23 rpaddcl 12937 . . . . . . . 8 ((1 ∈ ℝ+ ∧ ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
247, 22, 23sylancr 587 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
2524rpreccld 12967 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) ∈ ℝ+)
266, 25eqeltrid 2842 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑇 ∈ ℝ+)
27 smcn.c . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
282, 27imsmet 29633 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘𝑋))
291, 28ax-mp 5 . . . . . . . . . 10 𝐶 ∈ (Met‘𝑋)
3029a1i 11 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝐶 ∈ (Met‘𝑋))
311a1i 11 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑈 ∈ NrmCVec)
32 simplll 773 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑥 ∈ ℂ)
33 simpllr 774 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑦𝑋)
342, 3nvscl 29568 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦𝑋) → (𝑥𝑆𝑦) ∈ 𝑋)
3531, 32, 33, 34syl3anc 1371 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥𝑆𝑦) ∈ 𝑋)
36 simprll 777 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑧 ∈ ℂ)
37 simprlr 778 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑤𝑋)
382, 3nvscl 29568 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ 𝑤𝑋) → (𝑧𝑆𝑤) ∈ 𝑋)
3931, 36, 37, 38syl3anc 1371 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆𝑤) ∈ 𝑋)
40 metcl 23685 . . . . . . . . 9 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4130, 35, 39, 40syl3anc 1371 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
422, 3nvscl 29568 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ 𝑦𝑋) → (𝑧𝑆𝑦) ∈ 𝑋)
4331, 36, 33, 42syl3anc 1371 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆𝑦) ∈ 𝑋)
44 metcl 23685 . . . . . . . . . 10 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) ∈ ℝ)
4530, 35, 43, 44syl3anc 1371 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) ∈ ℝ)
46 metcl 23685 . . . . . . . . . 10 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑧𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4730, 43, 39, 46syl3anc 1371 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4845, 47readdcld 11184 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) ∈ ℝ)
49 rpre 12923 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
5049ad2antlr 725 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑟 ∈ ℝ)
51 mettri 23705 . . . . . . . . 9 ((𝐶 ∈ (Met‘𝑋) ∧ ((𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋)) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ≤ (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))))
5230, 35, 39, 43, 51syl13anc 1372 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ≤ (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))))
531, 33, 10sylancr 587 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁𝑦) ∈ ℝ)
5432abscld 15321 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑥) ∈ ℝ)
5553, 54readdcld 11184 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ)
56 peano2re 11328 . . . . . . . . . . 11 (((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ)
5826adantr 481 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℝ+)
5958rpred 12957 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℝ)
6057, 59remulcld 11185 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) ∈ ℝ)
6132, 36subcld 11512 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥𝑧) ∈ ℂ)
6261abscld 15321 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) ∈ ℝ)
6362, 53remulcld 11185 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ∈ ℝ)
6436abscld 15321 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ∈ ℝ)
65 eqid 2736 . . . . . . . . . . . . . . 15 ( −𝑣𝑈) = ( −𝑣𝑈)
662, 65nvmcl 29588 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋𝑤𝑋) → (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋)
6731, 33, 37, 66syl3anc 1371 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋)
682, 9nvcl 29603 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ∈ ℝ)
691, 67, 68sylancr 587 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ∈ ℝ)
7064, 69remulcld 11185 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))) ∈ ℝ)
7153, 59remulcld 11185 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑁𝑦) · 𝑇) ∈ ℝ)
72 peano2re 11328 . . . . . . . . . . . . 13 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
7354, 72syl 17 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + 1) ∈ ℝ)
7473, 59remulcld 11185 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((abs‘𝑥) + 1) · 𝑇) ∈ ℝ)
751, 33, 15sylancr 587 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (𝑁𝑦))
7632, 36abssubd 15338 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) = (abs‘(𝑧𝑥)))
7736, 32subcld 11512 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑥) ∈ ℂ)
7877abscld 15321 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ∈ ℝ)
79 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (abs ∘ − ) = (abs ∘ − )
8079cnmetdval 24134 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
8132, 36, 80syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
8281, 76eqtrd 2776 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑧𝑥)))
83 simprrl 779 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) < 𝑇)
8482, 83eqbrtrrd 5129 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) < 𝑇)
8578, 59, 84ltled 11303 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ≤ 𝑇)
8676, 85eqbrtrd 5127 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) ≤ 𝑇)
8762, 59, 53, 75, 86lemul1ad 12094 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ≤ (𝑇 · (𝑁𝑦)))
8858rpcnd 12959 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℂ)
8953recnd 11183 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁𝑦) ∈ ℂ)
9088, 89mulcomd 11176 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑇 · (𝑁𝑦)) = ((𝑁𝑦) · 𝑇))
9187, 90breqtrd 5131 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ≤ ((𝑁𝑦) · 𝑇))
9236absge0d 15329 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (abs‘𝑧))
932, 9nvge0 29615 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
941, 67, 93sylancr 587 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
9554, 78readdcld 11184 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + (abs‘(𝑧𝑥))) ∈ ℝ)
9632, 36pncan3d 11515 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (𝑧𝑥)) = 𝑧)
9796fveq2d 6846 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥 + (𝑧𝑥))) = (abs‘𝑧))
9832, 77abstrid 15341 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥 + (𝑧𝑥))) ≤ ((abs‘𝑥) + (abs‘(𝑧𝑥))))
9997, 98eqbrtrrd 5129 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ≤ ((abs‘𝑥) + (abs‘(𝑧𝑥))))
100 1red 11156 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 ∈ ℝ)
101 1re 11155 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
10222adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
103 ltaddrp 12952 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+) → 1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
104101, 102, 103sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
10524adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
106105recgt1d 12971 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ↔ (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 1))
107104, 106mpbid 231 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 1)
1086, 107eqbrtrid 5140 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 < 1)
10959, 100, 108ltled 11303 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ≤ 1)
11078, 59, 100, 85, 109letrd 11312 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ≤ 1)
11178, 100, 54, 110leadd2dd 11770 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + (abs‘(𝑧𝑥))) ≤ ((abs‘𝑥) + 1))
11264, 95, 73, 99, 111letrd 11312 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ≤ ((abs‘𝑥) + 1))
1132, 65, 9, 27imsdval 29628 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋𝑤𝑋) → (𝑦𝐶𝑤) = (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
11431, 33, 37, 113syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦𝐶𝑤) = (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
115 simprrr 780 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦𝐶𝑤) < 𝑇)
116114, 115eqbrtrrd 5129 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) < 𝑇)
11769, 59, 116ltled 11303 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ≤ 𝑇)
11864, 73, 69, 59, 92, 94, 112, 117lemul12ad 12097 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))) ≤ (((abs‘𝑥) + 1) · 𝑇))
11963, 70, 71, 74, 91, 118le2addd 11774 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((abs‘(𝑥𝑧)) · (𝑁𝑦)) + ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤)))) ≤ (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
120 eqid 2736 . . . . . . . . . . . . . 14 ( +𝑣𝑈) = ( +𝑣𝑈)
1212, 120, 3, 9, 27imsdval2 29629 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
12231, 35, 43, 121syl3anc 1371 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
123 neg1cn 12267 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
124 mulcl 11135 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) ∈ ℂ)
125123, 36, 124sylancr 587 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (-1 · 𝑧) ∈ ℂ)
1262, 120, 3nvdir 29573 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (-1 · 𝑧) ∈ ℂ ∧ 𝑦𝑋)) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)))
12731, 32, 125, 33, 126syl13anc 1372 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)))
12836mulm1d 11607 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (-1 · 𝑧) = -𝑧)
129128oveq2d 7373 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (-1 · 𝑧)) = (𝑥 + -𝑧))
13032, 36negsubd 11518 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + -𝑧) = (𝑥𝑧))
131129, 130eqtrd 2776 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (-1 · 𝑧)) = (𝑥𝑧))
132131oveq1d 7372 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑧)𝑆𝑦))
133123a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → -1 ∈ ℂ)
1342, 3nvsass 29570 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑦𝑋)) → ((-1 · 𝑧)𝑆𝑦) = (-1𝑆(𝑧𝑆𝑦)))
13531, 133, 36, 33, 134syl13anc 1372 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((-1 · 𝑧)𝑆𝑦) = (-1𝑆(𝑧𝑆𝑦)))
136135oveq2d 7373 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)) = ((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦))))
137127, 132, 1363eqtr3d 2784 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑧)𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦))))
138137fveq2d 6846 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
1392, 3, 9nvs 29605 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑧) ∈ ℂ ∧ 𝑦𝑋) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
14031, 61, 33, 139syl3anc 1371 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
141122, 138, 1403eqtr2d 2782 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
1422, 65, 9, 27imsdval 29628 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑧𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
14331, 43, 39, 142syl3anc 1371 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
1442, 65, 3nvmdi 29590 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝑧 ∈ ℂ ∧ 𝑦𝑋𝑤𝑋)) → (𝑧𝑆(𝑦( −𝑣𝑈)𝑤)) = ((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤)))
14531, 36, 33, 37, 144syl13anc 1372 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆(𝑦( −𝑣𝑈)𝑤)) = ((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤)))
146145fveq2d 6846 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
1472, 3, 9nvs 29605 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
14831, 36, 67, 147syl3anc 1371 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
149143, 146, 1483eqtr2d 2782 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
150141, 149oveq12d 7375 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) = (((abs‘(𝑥𝑧)) · (𝑁𝑦)) + ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤)))))
15154recnd 11183 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑥) ∈ ℂ)
152 1cnd 11150 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 ∈ ℂ)
15389, 151, 152addassd 11177 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) = ((𝑁𝑦) + ((abs‘𝑥) + 1)))
154153oveq1d 7372 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = (((𝑁𝑦) + ((abs‘𝑥) + 1)) · 𝑇))
15573recnd 11183 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + 1) ∈ ℂ)
15689, 155, 88adddird 11180 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + ((abs‘𝑥) + 1)) · 𝑇) = (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
157154, 156eqtrd 2776 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
158119, 150, 1573brtr4d 5137 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) ≤ ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇))
1596oveq2i 7368 . . . . . . . . . . 11 ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) · (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))))
16057recnd 11183 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℂ)
161105rpcnd 12959 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℂ)
162105rpne0d 12962 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ≠ 0)
163160, 161, 162divrecd 11934 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) · (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))))
164159, 163eqtr4id 2795 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))))
165 simplr 767 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑟 ∈ ℝ+)
166102rpred 12957 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ)
167166ltp1d 12085 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) < (((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) + 1))
168102rpcnd 12959 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℂ)
169168, 152addcomd 11357 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) + 1) = (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
170167, 169breqtrd 5131 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
17157, 165, 105, 170ltdiv23d 13024 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 𝑟)
172164, 171eqbrtrd 5127 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) < 𝑟)
17348, 60, 50, 158, 172lelttrd 11313 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) < 𝑟)
17441, 48, 50, 52, 173lelttrd 11313 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)
175174expr 457 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ ℂ ∧ 𝑤𝑋)) → (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
176175ralrimivva 3197 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
177 breq2 5109 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝑥(abs ∘ − )𝑧) < 𝑠 ↔ (𝑥(abs ∘ − )𝑧) < 𝑇))
178 breq2 5109 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < 𝑇))
179177, 178anbi12d 631 . . . . . . . 8 (𝑠 = 𝑇 → (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇)))
180179imbi1d 341 . . . . . . 7 (𝑠 = 𝑇 → ((((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟) ↔ (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
1811802ralbidv 3212 . . . . . 6 (𝑠 = 𝑇 → (∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟) ↔ ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
182181rspcev 3581 . . . . 5 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
18326, 176, 182syl2anc 584 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
184183ralrimiva 3143 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
185184rgen2 3194 . 2 𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)
186 cnxmet 24136 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
1872, 27imsxmet 29634 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
1881, 187ax-mp 5 . . 3 𝐶 ∈ (∞Met‘𝑋)
189 smcn.k . . . . 5 𝐾 = (TopOpen‘ℂfld)
190189cnfldtopn 24145 . . . 4 𝐾 = (MetOpen‘(abs ∘ − ))
191 smcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
192190, 191, 191txmetcn 23904 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘𝑋)) → (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ (𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))))
193186, 188, 188, 192mp3an 1461 . 2 (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ (𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
1945, 185, 193mpbir2an 709 1 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073   class class class wbr 5105   × cxp 5631  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  +crp 12915  abscabs 15119  TopOpenctopn 17303  ∞Metcxmet 20781  Metcmet 20782  MetOpencmopn 20786  fldccnfld 20796   Cn ccn 22575   ×t ctx 22911  NrmCVeccnv 29526   +𝑣 cpv 29527  BaseSetcba 29528   ·𝑠OLD cns 29529  𝑣 cnsb 29531  normCVcnmcv 29532  IndMetcims 29533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-xms 23673  df-tms 23675  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543
This theorem is referenced by:  smcn  29640
  Copyright terms: Public domain W3C validator