MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smcnlem Structured version   Visualization version   GIF version

Theorem smcnlem 28008
Description: Lemma for smcn 28009. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
smcn.c 𝐶 = (IndMet‘𝑈)
smcn.j 𝐽 = (MetOpen‘𝐶)
smcn.s 𝑆 = ( ·𝑠OLD𝑈)
smcn.k 𝐾 = (TopOpen‘ℂfld)
smcn.x 𝑋 = (BaseSet‘𝑈)
smcn.n 𝑁 = (normCV𝑈)
smcn.u 𝑈 ∈ NrmCVec
smcn.t 𝑇 = (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
Assertion
Ref Expression
smcnlem 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐶   𝐽,𝑟,𝑥,𝑦   𝑈,𝑟,𝑥,𝑦   𝐾,𝑟,𝑥,𝑦   𝑆,𝑟,𝑥,𝑦   𝑋,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑟)   𝑁(𝑥,𝑦,𝑟)

Proof of Theorem smcnlem
Dummy variables 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smcn.u . . 3 𝑈 ∈ NrmCVec
2 smcn.x . . . 4 𝑋 = (BaseSet‘𝑈)
3 smcn.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvsf 27930 . . 3 (𝑈 ∈ NrmCVec → 𝑆:(ℂ × 𝑋)⟶𝑋)
51, 4ax-mp 5 . 2 𝑆:(ℂ × 𝑋)⟶𝑋
6 smcn.t . . . . . 6 𝑇 = (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
7 1rp 12032 . . . . . . . 8 1 ∈ ℝ+
8 simpr 477 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 𝑦𝑋)
9 smcn.n . . . . . . . . . . . . 13 𝑁 = (normCV𝑈)
102, 9nvcl 27972 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
111, 8, 10sylancr 581 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
12 abscl 14303 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1312adantr 472 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (abs‘𝑥) ∈ ℝ)
1411, 13readdcld 10323 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → ((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ)
152, 9nvge0 27984 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → 0 ≤ (𝑁𝑦))
161, 8, 15sylancr 581 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ (𝑁𝑦))
17 absge0 14312 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
1817adantr 472 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ (abs‘𝑥))
1911, 13, 16, 18addge0d 10857 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → 0 ≤ ((𝑁𝑦) + (abs‘𝑥)))
2014, 19ge0p1rpd 12100 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ+)
21 rpdivcl 12054 . . . . . . . . 9 (((((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ+𝑟 ∈ ℝ+) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
2220, 21sylan 575 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
23 rpaddcl 12052 . . . . . . . 8 ((1 ∈ ℝ+ ∧ ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
247, 22, 23sylancr 581 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
2524rpreccld 12080 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) ∈ ℝ+)
266, 25syl5eqel 2848 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → 𝑇 ∈ ℝ+)
27 smcn.c . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
282, 27imsmet 28002 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘𝑋))
291, 28ax-mp 5 . . . . . . . . . 10 𝐶 ∈ (Met‘𝑋)
3029a1i 11 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝐶 ∈ (Met‘𝑋))
311a1i 11 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑈 ∈ NrmCVec)
32 simplll 791 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑥 ∈ ℂ)
33 simpllr 793 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑦𝑋)
342, 3nvscl 27937 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦𝑋) → (𝑥𝑆𝑦) ∈ 𝑋)
3531, 32, 33, 34syl3anc 1490 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥𝑆𝑦) ∈ 𝑋)
36 simprll 797 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑧 ∈ ℂ)
37 simprlr 798 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑤𝑋)
382, 3nvscl 27937 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ 𝑤𝑋) → (𝑧𝑆𝑤) ∈ 𝑋)
3931, 36, 37, 38syl3anc 1490 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆𝑤) ∈ 𝑋)
40 metcl 22416 . . . . . . . . 9 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4130, 35, 39, 40syl3anc 1490 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
422, 3nvscl 27937 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ 𝑦𝑋) → (𝑧𝑆𝑦) ∈ 𝑋)
4331, 36, 33, 42syl3anc 1490 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆𝑦) ∈ 𝑋)
44 metcl 22416 . . . . . . . . . 10 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) ∈ ℝ)
4530, 35, 43, 44syl3anc 1490 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) ∈ ℝ)
46 metcl 22416 . . . . . . . . . 10 ((𝐶 ∈ (Met‘𝑋) ∧ (𝑧𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4730, 43, 39, 46syl3anc 1490 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) ∈ ℝ)
4845, 47readdcld 10323 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) ∈ ℝ)
49 rpre 12036 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
5049ad2antlr 718 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑟 ∈ ℝ)
51 mettri 22436 . . . . . . . . 9 ((𝐶 ∈ (Met‘𝑋) ∧ ((𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋)) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ≤ (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))))
5230, 35, 39, 43, 51syl13anc 1491 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) ≤ (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))))
531, 33, 10sylancr 581 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁𝑦) ∈ ℝ)
5432abscld 14460 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑥) ∈ ℝ)
5553, 54readdcld 10323 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ)
56 peano2re 10463 . . . . . . . . . . 11 (((𝑁𝑦) + (abs‘𝑥)) ∈ ℝ → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℝ)
5826adantr 472 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℝ+)
5958rpred 12070 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℝ)
6057, 59remulcld 10324 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) ∈ ℝ)
6132, 36subcld 10646 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥𝑧) ∈ ℂ)
6261abscld 14460 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) ∈ ℝ)
6362, 53remulcld 10324 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ∈ ℝ)
6436abscld 14460 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ∈ ℝ)
65 eqid 2765 . . . . . . . . . . . . . . 15 ( −𝑣𝑈) = ( −𝑣𝑈)
662, 65nvmcl 27957 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋𝑤𝑋) → (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋)
6731, 33, 37, 66syl3anc 1490 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋)
682, 9nvcl 27972 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ∈ ℝ)
691, 67, 68sylancr 581 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ∈ ℝ)
7064, 69remulcld 10324 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))) ∈ ℝ)
7153, 59remulcld 10324 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑁𝑦) · 𝑇) ∈ ℝ)
72 peano2re 10463 . . . . . . . . . . . . 13 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
7354, 72syl 17 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + 1) ∈ ℝ)
7473, 59remulcld 10324 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((abs‘𝑥) + 1) · 𝑇) ∈ ℝ)
751, 33, 15sylancr 581 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (𝑁𝑦))
7632, 36abssubd 14477 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) = (abs‘(𝑧𝑥)))
7736, 32subcld 10646 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑥) ∈ ℂ)
7877abscld 14460 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ∈ ℝ)
79 eqid 2765 . . . . . . . . . . . . . . . . . . 19 (abs ∘ − ) = (abs ∘ − )
8079cnmetdval 22853 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
8132, 36, 80syl2anc 579 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑥𝑧)))
8281, 76eqtrd 2799 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) = (abs‘(𝑧𝑥)))
83 simprrl 799 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥(abs ∘ − )𝑧) < 𝑇)
8482, 83eqbrtrrd 4833 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) < 𝑇)
8578, 59, 84ltled 10439 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ≤ 𝑇)
8676, 85eqbrtrd 4831 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥𝑧)) ≤ 𝑇)
8762, 59, 53, 75, 86lemul1ad 11217 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ≤ (𝑇 · (𝑁𝑦)))
8858rpcnd 12072 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ∈ ℂ)
8953recnd 10322 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁𝑦) ∈ ℂ)
9088, 89mulcomd 10315 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑇 · (𝑁𝑦)) = ((𝑁𝑦) · 𝑇))
9187, 90breqtrd 4835 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘(𝑥𝑧)) · (𝑁𝑦)) ≤ ((𝑁𝑦) · 𝑇))
9236absge0d 14468 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (abs‘𝑧))
932, 9nvge0 27984 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
941, 67, 93sylancr 581 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 0 ≤ (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
9554, 78readdcld 10323 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + (abs‘(𝑧𝑥))) ∈ ℝ)
9632, 36pncan3d 10649 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (𝑧𝑥)) = 𝑧)
9796fveq2d 6379 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥 + (𝑧𝑥))) = (abs‘𝑧))
9832, 77abstrid 14480 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑥 + (𝑧𝑥))) ≤ ((abs‘𝑥) + (abs‘(𝑧𝑥))))
9997, 98eqbrtrrd 4833 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ≤ ((abs‘𝑥) + (abs‘(𝑧𝑥))))
100 1red 10294 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 ∈ ℝ)
101 1re 10293 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
10222adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+)
103 ltaddrp 12065 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ+) → 1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
104101, 102, 103sylancr 581 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
10524adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℝ+)
106105recgt1d 12084 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ↔ (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 1))
107104, 106mpbid 223 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 1)
1086, 107syl5eqbr 4844 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 < 1)
10959, 100, 108ltled 10439 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑇 ≤ 1)
11078, 59, 100, 85, 109letrd 10448 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘(𝑧𝑥)) ≤ 1)
11178, 100, 54, 110leadd2dd 10896 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + (abs‘(𝑧𝑥))) ≤ ((abs‘𝑥) + 1))
11264, 95, 73, 99, 111letrd 10448 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑧) ≤ ((abs‘𝑥) + 1))
1132, 65, 9, 27imsdval 27997 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋𝑤𝑋) → (𝑦𝐶𝑤) = (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
11431, 33, 37, 113syl3anc 1490 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦𝐶𝑤) = (𝑁‘(𝑦( −𝑣𝑈)𝑤)))
115 simprrr 800 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑦𝐶𝑤) < 𝑇)
116114, 115eqbrtrrd 4833 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) < 𝑇)
11769, 59, 116ltled 10439 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑦( −𝑣𝑈)𝑤)) ≤ 𝑇)
11864, 73, 69, 59, 92, 94, 112, 117lemul12ad 11220 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))) ≤ (((abs‘𝑥) + 1) · 𝑇))
11963, 70, 71, 74, 91, 118le2addd 10900 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((abs‘(𝑥𝑧)) · (𝑁𝑦)) + ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤)))) ≤ (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
120 eqid 2765 . . . . . . . . . . . . . 14 ( +𝑣𝑈) = ( +𝑣𝑈)
1212, 120, 3, 9, 27imsdval2 27998 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑦) ∈ 𝑋) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
12231, 35, 43, 121syl3anc 1490 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
123 neg1cn 11393 . . . . . . . . . . . . . . . 16 -1 ∈ ℂ
124 mulcl 10273 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) ∈ ℂ)
125123, 36, 124sylancr 581 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (-1 · 𝑧) ∈ ℂ)
1262, 120, 3nvdir 27942 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (-1 · 𝑧) ∈ ℂ ∧ 𝑦𝑋)) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)))
12731, 32, 125, 33, 126syl13anc 1491 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)))
12836mulm1d 10736 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (-1 · 𝑧) = -𝑧)
129128oveq2d 6858 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (-1 · 𝑧)) = (𝑥 + -𝑧))
13032, 36negsubd 10652 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + -𝑧) = (𝑥𝑧))
131129, 130eqtrd 2799 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑥 + (-1 · 𝑧)) = (𝑥𝑧))
132131oveq1d 6857 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥 + (-1 · 𝑧))𝑆𝑦) = ((𝑥𝑧)𝑆𝑦))
133123a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → -1 ∈ ℂ)
1342, 3nvsass 27939 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑦𝑋)) → ((-1 · 𝑧)𝑆𝑦) = (-1𝑆(𝑧𝑆𝑦)))
13531, 133, 36, 33, 134syl13anc 1491 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((-1 · 𝑧)𝑆𝑦) = (-1𝑆(𝑧𝑆𝑦)))
136135oveq2d 6858 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)( +𝑣𝑈)((-1 · 𝑧)𝑆𝑦)) = ((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦))))
137127, 132, 1363eqtr3d 2807 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑧)𝑆𝑦) = ((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦))))
138137fveq2d 6379 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = (𝑁‘((𝑥𝑆𝑦)( +𝑣𝑈)(-1𝑆(𝑧𝑆𝑦)))))
1392, 3, 9nvs 27974 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑧) ∈ ℂ ∧ 𝑦𝑋) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
14031, 61, 33, 139syl3anc 1490 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘((𝑥𝑧)𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
141122, 138, 1403eqtr2d 2805 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) = ((abs‘(𝑥𝑧)) · (𝑁𝑦)))
1422, 65, 9, 27imsdval 27997 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑧𝑆𝑦) ∈ 𝑋 ∧ (𝑧𝑆𝑤) ∈ 𝑋) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
14331, 43, 39, 142syl3anc 1490 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
1442, 65, 3nvmdi 27959 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝑧 ∈ ℂ ∧ 𝑦𝑋𝑤𝑋)) → (𝑧𝑆(𝑦( −𝑣𝑈)𝑤)) = ((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤)))
14531, 36, 33, 37, 144syl13anc 1491 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑧𝑆(𝑦( −𝑣𝑈)𝑤)) = ((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤)))
146145fveq2d 6379 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = (𝑁‘((𝑧𝑆𝑦)( −𝑣𝑈)(𝑧𝑆𝑤))))
1472, 3, 9nvs 27974 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ ℂ ∧ (𝑦( −𝑣𝑈)𝑤) ∈ 𝑋) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
14831, 36, 67, 147syl3anc 1490 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (𝑁‘(𝑧𝑆(𝑦( −𝑣𝑈)𝑤))) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
149143, 146, 1483eqtr2d 2805 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤)) = ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤))))
150141, 149oveq12d 6860 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) = (((abs‘(𝑥𝑧)) · (𝑁𝑦)) + ((abs‘𝑧) · (𝑁‘(𝑦( −𝑣𝑈)𝑤)))))
15154recnd 10322 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (abs‘𝑥) ∈ ℂ)
152 1cnd 10288 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 1 ∈ ℂ)
15389, 151, 152addassd 10316 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) = ((𝑁𝑦) + ((abs‘𝑥) + 1)))
154153oveq1d 6857 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = (((𝑁𝑦) + ((abs‘𝑥) + 1)) · 𝑇))
15573recnd 10322 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((abs‘𝑥) + 1) ∈ ℂ)
15689, 155, 88adddird 10319 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + ((abs‘𝑥) + 1)) · 𝑇) = (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
157154, 156eqtrd 2799 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = (((𝑁𝑦) · 𝑇) + (((abs‘𝑥) + 1) · 𝑇)))
158119, 150, 1573brtr4d 4841 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) ≤ ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇))
15957recnd 10322 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑁𝑦) + (abs‘𝑥)) + 1) ∈ ℂ)
160105rpcnd 12072 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ∈ ℂ)
161105rpne0d 12075 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)) ≠ 0)
162159, 160, 161divrecd 11058 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) · (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))))
1636oveq2i 6853 . . . . . . . . . . 11 ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) · (1 / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))))
164162, 163syl6reqr 2818 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) = ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))))
165 simplr 785 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → 𝑟 ∈ ℝ+)
166102rpred 12070 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℝ)
167166ltp1d 11208 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) < (((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) + 1))
168102rpcnd 12072 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) ∈ ℂ)
169168, 152addcomd 10492 . . . . . . . . . . . 12 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) + 1) = (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
170167, 169breqtrd 4835 . . . . . . . . . . 11 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟) < (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟)))
17157, 165, 105, 170ltdiv23d 12137 . . . . . . . . . 10 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) / (1 + ((((𝑁𝑦) + (abs‘𝑥)) + 1) / 𝑟))) < 𝑟)
172164, 171eqbrtrd 4831 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((((𝑁𝑦) + (abs‘𝑥)) + 1) · 𝑇) < 𝑟)
17348, 60, 50, 158, 172lelttrd 10449 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → (((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑦)) + ((𝑧𝑆𝑦)𝐶(𝑧𝑆𝑤))) < 𝑟)
17441, 48, 50, 52, 173lelttrd 10449 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ ((𝑧 ∈ ℂ ∧ 𝑤𝑋) ∧ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇))) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)
175174expr 448 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ ℂ ∧ 𝑤𝑋)) → (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
176175ralrimivva 3118 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
177 breq2 4813 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝑥(abs ∘ − )𝑧) < 𝑠 ↔ (𝑥(abs ∘ − )𝑧) < 𝑇))
178 breq2 4813 . . . . . . . . 9 (𝑠 = 𝑇 → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < 𝑇))
179177, 178anbi12d 624 . . . . . . . 8 (𝑠 = 𝑇 → (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇)))
180179imbi1d 332 . . . . . . 7 (𝑠 = 𝑇 → ((((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟) ↔ (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
1811802ralbidv 3136 . . . . . 6 (𝑠 = 𝑇 → (∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟) ↔ ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
182181rspcev 3461 . . . . 5 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑇 ∧ (𝑦𝐶𝑤) < 𝑇) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
18326, 176, 182syl2anc 579 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦𝑋) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
184183ralrimiva 3113 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦𝑋) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))
185184rgen2 3122 . 2 𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)
186 cnxmet 22855 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
1872, 27imsxmet 28003 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
1881, 187ax-mp 5 . . 3 𝐶 ∈ (∞Met‘𝑋)
189 smcn.k . . . . 5 𝐾 = (TopOpen‘ℂfld)
190189cnfldtopn 22864 . . . 4 𝐾 = (MetOpen‘(abs ∘ − ))
191 smcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
192190, 191, 191txmetcn 22632 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘𝑋)) → (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ (𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟))))
193186, 188, 188, 192mp3an 1585 . 2 (𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽) ↔ (𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ℂ ∀𝑤𝑋 (((𝑥(abs ∘ − )𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝑆𝑦)𝐶(𝑧𝑆𝑤)) < 𝑟)))
1945, 185, 193mpbir2an 702 1 𝑆 ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056   class class class wbr 4809   × cxp 5275  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  +crp 12028  abscabs 14259  TopOpenctopn 16348  ∞Metcxmet 20004  Metcmet 20005  MetOpencmopn 20009  fldccnfld 20019   Cn ccn 21308   ×t ctx 21643  NrmCVeccnv 27895   +𝑣 cpv 27896  BaseSetcba 27897   ·𝑠OLD cns 27898  𝑣 cnsb 27900  normCVcnmcv 27901  IndMetcims 27902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cn 21311  df-cnp 21312  df-tx 21645  df-hmeo 21838  df-xms 22404  df-tms 22406  df-grpo 27804  df-gid 27805  df-ginv 27806  df-gdiv 27807  df-ablo 27856  df-vc 27870  df-nv 27903  df-va 27906  df-ba 27907  df-sm 27908  df-0v 27909  df-vs 27910  df-nmcv 27911  df-ims 27912
This theorem is referenced by:  smcn  28009
  Copyright terms: Public domain W3C validator