MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldbdayim Structured version   Visualization version   GIF version

Theorem oldbdayim 27942
Description: If 𝑋 is in the old set for 𝐴, then the birthday of 𝑋 is less than 𝐴. (Contributed by Scott Fenton, 10-Aug-2024.)
Assertion
Ref Expression
oldbdayim (𝑋 ∈ ( O ‘𝐴) → ( bday 𝑋) ∈ 𝐴)

Proof of Theorem oldbdayim
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6944 . . 3 (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ dom O )
2 oldf 27911 . . . 4 O :On⟶𝒫 No
32fdmi 6748 . . 3 dom O = On
41, 3eleqtrdi 2849 . 2 (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ On)
5 elold 27923 . . 3 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
6 madebdayim 27941 . . . . . 6 (𝑋 ∈ ( M ‘𝑏) → ( bday 𝑋) ⊆ 𝑏)
76ad2antll 729 . . . . 5 ((𝐴 ∈ On ∧ (𝑏𝐴𝑋 ∈ ( M ‘𝑏))) → ( bday 𝑋) ⊆ 𝑏)
8 simprl 771 . . . . 5 ((𝐴 ∈ On ∧ (𝑏𝐴𝑋 ∈ ( M ‘𝑏))) → 𝑏𝐴)
9 bdayelon 27836 . . . . . . 7 ( bday 𝑋) ∈ On
10 ontr2 6433 . . . . . . 7 ((( bday 𝑋) ∈ On ∧ 𝐴 ∈ On) → ((( bday 𝑋) ⊆ 𝑏𝑏𝐴) → ( bday 𝑋) ∈ 𝐴))
119, 10mpan 690 . . . . . 6 (𝐴 ∈ On → ((( bday 𝑋) ⊆ 𝑏𝑏𝐴) → ( bday 𝑋) ∈ 𝐴))
1211adantr 480 . . . . 5 ((𝐴 ∈ On ∧ (𝑏𝐴𝑋 ∈ ( M ‘𝑏))) → ((( bday 𝑋) ⊆ 𝑏𝑏𝐴) → ( bday 𝑋) ∈ 𝐴))
137, 8, 12mp2and 699 . . . 4 ((𝐴 ∈ On ∧ (𝑏𝐴𝑋 ∈ ( M ‘𝑏))) → ( bday 𝑋) ∈ 𝐴)
1413rexlimdvaa 3154 . . 3 (𝐴 ∈ On → (∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏) → ( bday 𝑋) ∈ 𝐴))
155, 14sylbid 240 . 2 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) → ( bday 𝑋) ∈ 𝐴))
164, 15mpcom 38 1 (𝑋 ∈ ( O ‘𝐴) → ( bday 𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wrex 3068  wss 3963  𝒫 cpw 4605  dom cdm 5689  Oncon0 6386  cfv 6563   No csur 27699   bday cbday 27701   M cmade 27896   O cold 27897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-made 27901  df-old 27902
This theorem is referenced by:  oldirr  27943  oldbday  27954  addsbdaylem  28064  negsproplem2  28076  negsbdaylem  28103  mulsproplem2  28158  mulsproplem3  28159  mulsproplem4  28160  mulsproplem5  28161  mulsproplem6  28162  mulsproplem7  28163  mulsproplem8  28164
  Copyright terms: Public domain W3C validator