| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldbdayim | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is in the old set for 𝐴, then the birthday of 𝑋 is less than 𝐴. (Contributed by Scott Fenton, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldbdayim | ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6865 | . . 3 ⊢ (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ dom O ) | |
| 2 | oldf 27808 | . . . 4 ⊢ O :On⟶𝒫 No | |
| 3 | 2 | fdmi 6670 | . . 3 ⊢ dom O = On |
| 4 | 1, 3 | eleqtrdi 2843 | . 2 ⊢ (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ On) |
| 5 | elold 27824 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
| 6 | madebdayim 27843 | . . . . . 6 ⊢ (𝑋 ∈ ( M ‘𝑏) → ( bday ‘𝑋) ⊆ 𝑏) | |
| 7 | 6 | ad2antll 729 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ( bday ‘𝑋) ⊆ 𝑏) |
| 8 | simprl 770 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → 𝑏 ∈ 𝐴) | |
| 9 | bdayelon 27725 | . . . . . . 7 ⊢ ( bday ‘𝑋) ∈ On | |
| 10 | ontr2 6362 | . . . . . . 7 ⊢ ((( bday ‘𝑋) ∈ On ∧ 𝐴 ∈ On) → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) | |
| 11 | 9, 10 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ On → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
| 13 | 7, 8, 12 | mp2and 699 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ( bday ‘𝑋) ∈ 𝐴) |
| 14 | 13 | rexlimdvaa 3136 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏) → ( bday ‘𝑋) ∈ 𝐴)) |
| 15 | 5, 14 | sylbid 240 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
| 16 | 4, 15 | mpcom 38 | 1 ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∃wrex 3058 ⊆ wss 3899 𝒫 cpw 4551 dom cdm 5621 Oncon0 6314 ‘cfv 6489 No csur 27588 bday cbday 27590 M cmade 27793 O cold 27794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-no 27591 df-slt 27592 df-bday 27593 df-sslt 27731 df-scut 27733 df-made 27798 df-old 27799 |
| This theorem is referenced by: oldirr 27845 oldbday 27856 bdayiun 27870 addsbdaylem 27969 negsproplem2 27981 negsbdaylem 28008 mulsproplem2 28066 mulsproplem3 28067 mulsproplem4 28068 mulsproplem5 28069 mulsproplem6 28070 mulsproplem7 28071 mulsproplem8 28072 onsiso 28215 |
| Copyright terms: Public domain | W3C validator |