Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldbdayim | Structured version Visualization version GIF version |
Description: If 𝑋 is in the old set for 𝐴, then the birthday of 𝑋 is less than 𝐴. (Contributed by Scott Fenton, 10-Aug-2024.) |
Ref | Expression |
---|---|
oldbdayim | ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6788 | . . 3 ⊢ (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ dom O ) | |
2 | oldf 33968 | . . . 4 ⊢ O :On⟶𝒫 No | |
3 | 2 | fdmi 6596 | . . 3 ⊢ dom O = On |
4 | 1, 3 | eleqtrdi 2849 | . 2 ⊢ (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ On) |
5 | elold 33980 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
6 | madebdayim 33997 | . . . . . 6 ⊢ (𝑋 ∈ ( M ‘𝑏) → ( bday ‘𝑋) ⊆ 𝑏) | |
7 | 6 | ad2antll 725 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ( bday ‘𝑋) ⊆ 𝑏) |
8 | simprl 767 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → 𝑏 ∈ 𝐴) | |
9 | bdayelon 33898 | . . . . . . 7 ⊢ ( bday ‘𝑋) ∈ On | |
10 | ontr2 6298 | . . . . . . 7 ⊢ ((( bday ‘𝑋) ∈ On ∧ 𝐴 ∈ On) → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) | |
11 | 9, 10 | mpan 686 | . . . . . 6 ⊢ (𝐴 ∈ On → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
13 | 7, 8, 12 | mp2and 695 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ( bday ‘𝑋) ∈ 𝐴) |
14 | 13 | rexlimdvaa 3213 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏) → ( bday ‘𝑋) ∈ 𝐴)) |
15 | 5, 14 | sylbid 239 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
16 | 4, 15 | mpcom 38 | 1 ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 dom cdm 5580 Oncon0 6251 ‘cfv 6418 No csur 33770 bday cbday 33772 M cmade 33953 O cold 33954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 df-old 33959 |
This theorem is referenced by: oldirr 33999 oldbday 34008 |
Copyright terms: Public domain | W3C validator |