| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldbdayim | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is in the old set for 𝐴, then the birthday of 𝑋 is less than 𝐴. (Contributed by Scott Fenton, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldbdayim | ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6851 | . . 3 ⊢ (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ dom O ) | |
| 2 | oldf 27791 | . . . 4 ⊢ O :On⟶𝒫 No | |
| 3 | 2 | fdmi 6658 | . . 3 ⊢ dom O = On |
| 4 | 1, 3 | eleqtrdi 2839 | . 2 ⊢ (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ On) |
| 5 | elold 27807 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
| 6 | madebdayim 27826 | . . . . . 6 ⊢ (𝑋 ∈ ( M ‘𝑏) → ( bday ‘𝑋) ⊆ 𝑏) | |
| 7 | 6 | ad2antll 729 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ( bday ‘𝑋) ⊆ 𝑏) |
| 8 | simprl 770 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → 𝑏 ∈ 𝐴) | |
| 9 | bdayelon 27708 | . . . . . . 7 ⊢ ( bday ‘𝑋) ∈ On | |
| 10 | ontr2 6350 | . . . . . . 7 ⊢ ((( bday ‘𝑋) ∈ On ∧ 𝐴 ∈ On) → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) | |
| 11 | 9, 10 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ On → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
| 13 | 7, 8, 12 | mp2and 699 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ( bday ‘𝑋) ∈ 𝐴) |
| 14 | 13 | rexlimdvaa 3132 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏) → ( bday ‘𝑋) ∈ 𝐴)) |
| 15 | 5, 14 | sylbid 240 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
| 16 | 4, 15 | mpcom 38 | 1 ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 ∃wrex 3054 ⊆ wss 3900 𝒫 cpw 4548 dom cdm 5614 Oncon0 6302 ‘cfv 6477 No csur 27571 bday cbday 27573 M cmade 27776 O cold 27777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-no 27574 df-slt 27575 df-bday 27576 df-sslt 27714 df-scut 27716 df-made 27781 df-old 27782 |
| This theorem is referenced by: oldirr 27828 oldbday 27839 bdayiun 27853 addsbdaylem 27952 negsproplem2 27964 negsbdaylem 27991 mulsproplem2 28049 mulsproplem3 28050 mulsproplem4 28051 mulsproplem5 28052 mulsproplem6 28053 mulsproplem7 28054 mulsproplem8 28055 onsiso 28198 |
| Copyright terms: Public domain | W3C validator |