![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldbdayim | Structured version Visualization version GIF version |
Description: If π is in the old set for π΄, then the birthday of π is less than π΄. (Contributed by Scott Fenton, 10-Aug-2024.) |
Ref | Expression |
---|---|
oldbdayim | β’ (π β ( O βπ΄) β ( bday βπ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6928 | . . 3 β’ (π β ( O βπ΄) β π΄ β dom O ) | |
2 | oldf 27349 | . . . 4 β’ O :OnβΆπ« No | |
3 | 2 | fdmi 6729 | . . 3 β’ dom O = On |
4 | 1, 3 | eleqtrdi 2843 | . 2 β’ (π β ( O βπ΄) β π΄ β On) |
5 | elold 27361 | . . 3 β’ (π΄ β On β (π β ( O βπ΄) β βπ β π΄ π β ( M βπ))) | |
6 | madebdayim 27379 | . . . . . 6 β’ (π β ( M βπ) β ( bday βπ) β π) | |
7 | 6 | ad2antll 727 | . . . . 5 β’ ((π΄ β On β§ (π β π΄ β§ π β ( M βπ))) β ( bday βπ) β π) |
8 | simprl 769 | . . . . 5 β’ ((π΄ β On β§ (π β π΄ β§ π β ( M βπ))) β π β π΄) | |
9 | bdayelon 27275 | . . . . . . 7 β’ ( bday βπ) β On | |
10 | ontr2 6411 | . . . . . . 7 β’ ((( bday βπ) β On β§ π΄ β On) β ((( bday βπ) β π β§ π β π΄) β ( bday βπ) β π΄)) | |
11 | 9, 10 | mpan 688 | . . . . . 6 β’ (π΄ β On β ((( bday βπ) β π β§ π β π΄) β ( bday βπ) β π΄)) |
12 | 11 | adantr 481 | . . . . 5 β’ ((π΄ β On β§ (π β π΄ β§ π β ( M βπ))) β ((( bday βπ) β π β§ π β π΄) β ( bday βπ) β π΄)) |
13 | 7, 8, 12 | mp2and 697 | . . . 4 β’ ((π΄ β On β§ (π β π΄ β§ π β ( M βπ))) β ( bday βπ) β π΄) |
14 | 13 | rexlimdvaa 3156 | . . 3 β’ (π΄ β On β (βπ β π΄ π β ( M βπ) β ( bday βπ) β π΄)) |
15 | 5, 14 | sylbid 239 | . 2 β’ (π΄ β On β (π β ( O βπ΄) β ( bday βπ) β π΄)) |
16 | 4, 15 | mpcom 38 | 1 β’ (π β ( O βπ΄) β ( bday βπ) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 βwrex 3070 β wss 3948 π« cpw 4602 dom cdm 5676 Oncon0 6364 βcfv 6543 No csur 27140 bday cbday 27142 M cmade 27334 O cold 27335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-1o 8465 df-2o 8466 df-no 27143 df-slt 27144 df-bday 27145 df-sslt 27280 df-scut 27282 df-made 27339 df-old 27340 |
This theorem is referenced by: oldirr 27381 oldbday 27392 negsproplem2 27500 negsbdaylem 27527 mulsproplem2 27570 mulsproplem3 27571 mulsproplem4 27572 mulsproplem5 27573 mulsproplem6 27574 mulsproplem7 27575 mulsproplem8 27576 |
Copyright terms: Public domain | W3C validator |