![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldbdayim | Structured version Visualization version GIF version |
Description: If 𝑋 is in the old set for 𝐴, then the birthday of 𝑋 is less than 𝐴. (Contributed by Scott Fenton, 10-Aug-2024.) |
Ref | Expression |
---|---|
oldbdayim | ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6957 | . . 3 ⊢ (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ dom O ) | |
2 | oldf 27914 | . . . 4 ⊢ O :On⟶𝒫 No | |
3 | 2 | fdmi 6758 | . . 3 ⊢ dom O = On |
4 | 1, 3 | eleqtrdi 2854 | . 2 ⊢ (𝑋 ∈ ( O ‘𝐴) → 𝐴 ∈ On) |
5 | elold 27926 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | |
6 | madebdayim 27944 | . . . . . 6 ⊢ (𝑋 ∈ ( M ‘𝑏) → ( bday ‘𝑋) ⊆ 𝑏) | |
7 | 6 | ad2antll 728 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ( bday ‘𝑋) ⊆ 𝑏) |
8 | simprl 770 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → 𝑏 ∈ 𝐴) | |
9 | bdayelon 27839 | . . . . . . 7 ⊢ ( bday ‘𝑋) ∈ On | |
10 | ontr2 6442 | . . . . . . 7 ⊢ ((( bday ‘𝑋) ∈ On ∧ 𝐴 ∈ On) → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) | |
11 | 9, 10 | mpan 689 | . . . . . 6 ⊢ (𝐴 ∈ On → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ((( bday ‘𝑋) ⊆ 𝑏 ∧ 𝑏 ∈ 𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
13 | 7, 8, 12 | mp2and 698 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑋 ∈ ( M ‘𝑏))) → ( bday ‘𝑋) ∈ 𝐴) |
14 | 13 | rexlimdvaa 3162 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏) → ( bday ‘𝑋) ∈ 𝐴)) |
15 | 5, 14 | sylbid 240 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴)) |
16 | 4, 15 | mpcom 38 | 1 ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 𝒫 cpw 4622 dom cdm 5700 Oncon0 6395 ‘cfv 6573 No csur 27702 bday cbday 27704 M cmade 27899 O cold 27900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-made 27904 df-old 27905 |
This theorem is referenced by: oldirr 27946 oldbday 27957 addsbdaylem 28067 negsproplem2 28079 negsbdaylem 28106 mulsproplem2 28161 mulsproplem3 28162 mulsproplem4 28163 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 |
Copyright terms: Public domain | W3C validator |