![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem11 | Structured version Visualization version GIF version |
Description: Lemma for paddass 38704. The case when π = π§. (Contributed by NM, 11-Jan-2012.) |
Ref | Expression |
---|---|
paddasslem.l | β’ β€ = (leβπΎ) |
paddasslem.j | β’ β¨ = (joinβπΎ) |
paddasslem.a | β’ π΄ = (AtomsβπΎ) |
paddasslem.p | β’ + = (+πβπΎ) |
Ref | Expression |
---|---|
paddasslem11 | β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β ((π + π) + π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 773 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β πΎ β HL) | |
2 | simplr3 1217 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β π΄) | |
3 | simplr1 1215 | . . . 4 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β π΄) | |
4 | simplr2 1216 | . . . 4 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β π΄) | |
5 | paddasslem.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
6 | paddasslem.p | . . . . 5 β’ + = (+πβπΎ) | |
7 | 5, 6 | paddssat 38680 | . . . 4 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π + π) β π΄) |
8 | 1, 3, 4, 7 | syl3anc 1371 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β (π + π) β π΄) |
9 | 5, 6 | sspadd2 38682 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ (π + π) β π΄) β π β ((π + π) + π)) |
10 | 1, 2, 8, 9 | syl3anc 1371 | . 2 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β ((π + π) + π)) |
11 | simpllr 774 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π = π§) | |
12 | simpr 485 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π§ β π) | |
13 | 11, 12 | eqeltrd 2833 | . 2 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β π) |
14 | 10, 13 | sseldd 3983 | 1 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β ((π + π) + π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wss 3948 βcfv 6543 (class class class)co 7408 lecple 17203 joincjn 18263 Atomscatm 38128 HLchlt 38215 +πcpadd 38661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-padd 38662 |
This theorem is referenced by: paddasslem14 38699 |
Copyright terms: Public domain | W3C validator |