![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem11 | Structured version Visualization version GIF version |
Description: Lemma for paddass 35908. The case when 𝑝 = 𝑧. (Contributed by NM, 11-Jan-2012.) |
Ref | Expression |
---|---|
paddasslem.l | ⊢ ≤ = (le‘𝐾) |
paddasslem.j | ⊢ ∨ = (join‘𝐾) |
paddasslem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddasslem.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
paddasslem11 | ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 791 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝐾 ∈ HL) | |
2 | simplr3 1283 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑍 ⊆ 𝐴) | |
3 | simplr1 1279 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑋 ⊆ 𝐴) | |
4 | simplr2 1281 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑌 ⊆ 𝐴) | |
5 | paddasslem.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | paddasslem.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
7 | 5, 6 | paddssat 35884 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
8 | 1, 3, 4, 7 | syl3anc 1494 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → (𝑋 + 𝑌) ⊆ 𝐴) |
9 | 5, 6 | sspadd2 35886 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ (𝑋 + 𝑌) ⊆ 𝐴) → 𝑍 ⊆ ((𝑋 + 𝑌) + 𝑍)) |
10 | 1, 2, 8, 9 | syl3anc 1494 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑍 ⊆ ((𝑋 + 𝑌) + 𝑍)) |
11 | simpllr 793 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑝 = 𝑧) | |
12 | simpr 479 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑧 ∈ 𝑍) | |
13 | 11, 12 | eqeltrd 2906 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑝 ∈ 𝑍) |
14 | 10, 13 | sseldd 3828 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 ‘cfv 6127 (class class class)co 6910 lecple 16319 joincjn 17304 Atomscatm 35333 HLchlt 35420 +𝑃cpadd 35865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-padd 35866 |
This theorem is referenced by: paddasslem14 35903 |
Copyright terms: Public domain | W3C validator |