![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem11 | Structured version Visualization version GIF version |
Description: Lemma for paddass 39235. The case when π = π§. (Contributed by NM, 11-Jan-2012.) |
Ref | Expression |
---|---|
paddasslem.l | β’ β€ = (leβπΎ) |
paddasslem.j | β’ β¨ = (joinβπΎ) |
paddasslem.a | β’ π΄ = (AtomsβπΎ) |
paddasslem.p | β’ + = (+πβπΎ) |
Ref | Expression |
---|---|
paddasslem11 | β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β ((π + π) + π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 774 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β πΎ β HL) | |
2 | simplr3 1215 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β π΄) | |
3 | simplr1 1213 | . . . 4 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β π΄) | |
4 | simplr2 1214 | . . . 4 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β π΄) | |
5 | paddasslem.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
6 | paddasslem.p | . . . . 5 β’ + = (+πβπΎ) | |
7 | 5, 6 | paddssat 39211 | . . . 4 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π + π) β π΄) |
8 | 1, 3, 4, 7 | syl3anc 1369 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β (π + π) β π΄) |
9 | 5, 6 | sspadd2 39213 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ (π + π) β π΄) β π β ((π + π) + π)) |
10 | 1, 2, 8, 9 | syl3anc 1369 | . 2 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β ((π + π) + π)) |
11 | simpllr 775 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π = π§) | |
12 | simpr 484 | . . 3 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π§ β π) | |
13 | 11, 12 | eqeltrd 2828 | . 2 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β π) |
14 | 10, 13 | sseldd 3979 | 1 β’ ((((πΎ β HL β§ π = π§) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ π§ β π) β π β ((π + π) + π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β wss 3944 βcfv 6542 (class class class)co 7414 lecple 17225 joincjn 18288 Atomscatm 38659 HLchlt 38746 +πcpadd 39192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-padd 39193 |
This theorem is referenced by: paddasslem14 39230 |
Copyright terms: Public domain | W3C validator |