Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem11 Structured version   Visualization version   GIF version

Theorem paddasslem11 39928
Description: Lemma for paddass 39936. The case when 𝑝 = 𝑧. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem11 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem11
StepHypRef Expression
1 simplll 774 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝐾 ∈ HL)
2 simplr3 1218 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑍𝐴)
3 simplr1 1216 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑋𝐴)
4 simplr2 1217 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑌𝐴)
5 paddasslem.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 paddasslem.p . . . . 5 + = (+𝑃𝐾)
75, 6paddssat 39912 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
81, 3, 4, 7syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → (𝑋 + 𝑌) ⊆ 𝐴)
95, 6sspadd2 39914 . . 3 ((𝐾 ∈ HL ∧ 𝑍𝐴 ∧ (𝑋 + 𝑌) ⊆ 𝐴) → 𝑍 ⊆ ((𝑋 + 𝑌) + 𝑍))
101, 2, 8, 9syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑍 ⊆ ((𝑋 + 𝑌) + 𝑍))
11 simpllr 775 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑝 = 𝑧)
12 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑧𝑍)
1311, 12eqeltrd 2831 . 2 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑝𝑍)
1410, 13sseldd 3930 1 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897  cfv 6481  (class class class)co 7346  lecple 17168  joincjn 18217  Atomscatm 39361  HLchlt 39448  +𝑃cpadd 39893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-padd 39894
This theorem is referenced by:  paddasslem14  39931
  Copyright terms: Public domain W3C validator