Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddass Structured version   Visualization version   GIF version

Theorem paddass 39839
Description: Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddass.a 𝐴 = (Atoms‘𝐾)
paddass.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddass ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem paddass
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾 ∈ HL)
2 simpr3 1197 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑍𝐴)
3 simpr2 1196 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
4 simpr1 1195 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
5 paddass.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 paddass.p . . . . 5 + = (+𝑃𝐾)
75, 6paddasslem18 39838 . . . 4 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝐴)) → (𝑍 + (𝑌 + 𝑋)) ⊆ ((𝑍 + 𝑌) + 𝑋))
81, 2, 3, 4, 7syl13anc 1374 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑍 + (𝑌 + 𝑋)) ⊆ ((𝑍 + 𝑌) + 𝑋))
9 hllat 39363 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
105, 6paddcom 39814 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
119, 10syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
12113adant3r3 1185 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
1312oveq1d 7405 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍))
145, 6paddssat 39815 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝐴) → (𝑌 + 𝑋) ⊆ 𝐴)
151, 3, 4, 14syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 + 𝑋) ⊆ 𝐴)
165, 6paddcom 39814 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑌 + 𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
179, 16syl3an1 1163 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 + 𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
181, 15, 2, 17syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
1913, 18eqtrd 2765 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
205, 6paddcom 39814 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐴𝑍𝐴) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
219, 20syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑍𝐴) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
22213adant3r1 1183 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
2322oveq2d 7406 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑍 + 𝑌)))
245, 6paddssat 39815 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑌𝐴) → (𝑍 + 𝑌) ⊆ 𝐴)
251, 2, 3, 24syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑍 + 𝑌) ⊆ 𝐴)
265, 6paddcom 39814 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ (𝑍 + 𝑌) ⊆ 𝐴) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
279, 26syl3an1 1163 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑍 + 𝑌) ⊆ 𝐴) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
281, 4, 25, 27syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
2923, 28eqtrd 2765 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) = ((𝑍 + 𝑌) + 𝑋))
308, 19, 293sstr4d 4005 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) ⊆ (𝑋 + (𝑌 + 𝑍)))
315, 6paddasslem18 39838 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))
3230, 31eqssd 3967 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Latclat 18397  Atomscatm 39263  HLchlt 39350  +𝑃cpadd 39796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-padd 39797
This theorem is referenced by:  padd12N  39840  padd4N  39841  pmodl42N  39852  pmapjlln1  39856
  Copyright terms: Public domain W3C validator