Proof of Theorem paddass
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝐾 ∈ HL) |
2 | | simpr3 1194 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑍 ⊆ 𝐴) |
3 | | simpr2 1193 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑌 ⊆ 𝐴) |
4 | | simpr1 1192 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑋 ⊆ 𝐴) |
5 | | paddass.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | paddass.p |
. . . . 5
⊢ + =
(+𝑃‘𝐾) |
7 | 5, 6 | paddasslem18 37778 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴)) → (𝑍 + (𝑌 + 𝑋)) ⊆ ((𝑍 + 𝑌) + 𝑋)) |
8 | 1, 2, 3, 4, 7 | syl13anc 1370 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑍 + (𝑌 + 𝑋)) ⊆ ((𝑍 + 𝑌) + 𝑋)) |
9 | | hllat 37304 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
10 | 5, 6 | paddcom 37754 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
11 | 9, 10 | syl3an1 1161 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
12 | 11 | 3adant3r3 1182 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
13 | 12 | oveq1d 7270 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍)) |
14 | 5, 6 | paddssat 37755 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑌 + 𝑋) ⊆ 𝐴) |
15 | 1, 3, 4, 14 | syl3anc 1369 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑌 + 𝑋) ⊆ 𝐴) |
16 | 5, 6 | paddcom 37754 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑌 + 𝑋) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋))) |
17 | 9, 16 | syl3an1 1161 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑌 + 𝑋) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋))) |
18 | 1, 15, 2, 17 | syl3anc 1369 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋))) |
19 | 13, 18 | eqtrd 2778 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑍 + (𝑌 + 𝑋))) |
20 | 5, 6 | paddcom 37754 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
21 | 9, 20 | syl3an1 1161 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
22 | 21 | 3adant3r1 1180 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
23 | 22 | oveq2d 7271 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑍 + 𝑌))) |
24 | 5, 6 | paddssat 37755 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑍 + 𝑌) ⊆ 𝐴) |
25 | 1, 2, 3, 24 | syl3anc 1369 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑍 + 𝑌) ⊆ 𝐴) |
26 | 5, 6 | paddcom 37754 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ (𝑍 + 𝑌) ⊆ 𝐴) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋)) |
27 | 9, 26 | syl3an1 1161 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ (𝑍 + 𝑌) ⊆ 𝐴) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋)) |
28 | 1, 4, 25, 27 | syl3anc 1369 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋)) |
29 | 23, 28 | eqtrd 2778 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) = ((𝑍 + 𝑌) + 𝑋)) |
30 | 8, 19, 29 | 3sstr4d 3964 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + 𝑍) ⊆ (𝑋 + (𝑌 + 𝑍))) |
31 | 5, 6 | paddasslem18 37778 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
32 | 30, 31 | eqssd 3934 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |