Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddass Structured version   Visualization version   GIF version

Theorem paddass 39837
Description: Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddass.a 𝐴 = (Atoms‘𝐾)
paddass.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddass ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem paddass
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾 ∈ HL)
2 simpr3 1197 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑍𝐴)
3 simpr2 1196 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
4 simpr1 1195 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
5 paddass.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 paddass.p . . . . 5 + = (+𝑃𝐾)
75, 6paddasslem18 39836 . . . 4 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝐴)) → (𝑍 + (𝑌 + 𝑋)) ⊆ ((𝑍 + 𝑌) + 𝑋))
81, 2, 3, 4, 7syl13anc 1374 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑍 + (𝑌 + 𝑋)) ⊆ ((𝑍 + 𝑌) + 𝑋))
9 hllat 39362 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
105, 6paddcom 39812 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
119, 10syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
12113adant3r3 1185 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
1312oveq1d 7364 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍))
145, 6paddssat 39813 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝐴) → (𝑌 + 𝑋) ⊆ 𝐴)
151, 3, 4, 14syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 + 𝑋) ⊆ 𝐴)
165, 6paddcom 39812 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑌 + 𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
179, 16syl3an1 1163 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 + 𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
181, 15, 2, 17syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
1913, 18eqtrd 2764 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
205, 6paddcom 39812 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐴𝑍𝐴) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
219, 20syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑍𝐴) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
22213adant3r1 1183 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
2322oveq2d 7365 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑍 + 𝑌)))
245, 6paddssat 39813 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑌𝐴) → (𝑍 + 𝑌) ⊆ 𝐴)
251, 2, 3, 24syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑍 + 𝑌) ⊆ 𝐴)
265, 6paddcom 39812 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ (𝑍 + 𝑌) ⊆ 𝐴) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
279, 26syl3an1 1163 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑍 + 𝑌) ⊆ 𝐴) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
281, 4, 25, 27syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
2923, 28eqtrd 2764 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) = ((𝑍 + 𝑌) + 𝑋))
308, 19, 293sstr4d 3991 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) ⊆ (𝑋 + (𝑌 + 𝑍)))
315, 6paddasslem18 39836 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))
3230, 31eqssd 3953 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  cfv 6482  (class class class)co 7349  Latclat 18337  Atomscatm 39262  HLchlt 39349  +𝑃cpadd 39794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39175  df-ol 39177  df-oml 39178  df-covers 39265  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-padd 39795
This theorem is referenced by:  padd12N  39838  padd4N  39839  pmodl42N  39850  pmapjlln1  39854
  Copyright terms: Public domain W3C validator