Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddass Structured version   Visualization version   GIF version

Theorem paddass 39821
Description: Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddass.a 𝐴 = (Atoms‘𝐾)
paddass.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddass ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem paddass
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾 ∈ HL)
2 simpr3 1195 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑍𝐴)
3 simpr2 1194 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
4 simpr1 1193 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
5 paddass.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 paddass.p . . . . 5 + = (+𝑃𝐾)
75, 6paddasslem18 39820 . . . 4 ((𝐾 ∈ HL ∧ (𝑍𝐴𝑌𝐴𝑋𝐴)) → (𝑍 + (𝑌 + 𝑋)) ⊆ ((𝑍 + 𝑌) + 𝑋))
81, 2, 3, 4, 7syl13anc 1371 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑍 + (𝑌 + 𝑋)) ⊆ ((𝑍 + 𝑌) + 𝑋))
9 hllat 39345 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
105, 6paddcom 39796 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
119, 10syl3an1 1162 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
12113adant3r3 1183 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
1312oveq1d 7446 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍))
145, 6paddssat 39797 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝐴) → (𝑌 + 𝑋) ⊆ 𝐴)
151, 3, 4, 14syl3anc 1370 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 + 𝑋) ⊆ 𝐴)
165, 6paddcom 39796 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑌 + 𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
179, 16syl3an1 1162 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 + 𝑋) ⊆ 𝐴𝑍𝐴) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
181, 15, 2, 17syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑌 + 𝑋) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
1913, 18eqtrd 2775 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑍 + (𝑌 + 𝑋)))
205, 6paddcom 39796 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐴𝑍𝐴) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
219, 20syl3an1 1162 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑍𝐴) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
22213adant3r1 1181 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
2322oveq2d 7447 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑍 + 𝑌)))
245, 6paddssat 39797 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑌𝐴) → (𝑍 + 𝑌) ⊆ 𝐴)
251, 2, 3, 24syl3anc 1370 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑍 + 𝑌) ⊆ 𝐴)
265, 6paddcom 39796 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ (𝑍 + 𝑌) ⊆ 𝐴) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
279, 26syl3an1 1162 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑍 + 𝑌) ⊆ 𝐴) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
281, 4, 25, 27syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑍 + 𝑌)) = ((𝑍 + 𝑌) + 𝑋))
2923, 28eqtrd 2775 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) = ((𝑍 + 𝑌) + 𝑋))
308, 19, 293sstr4d 4043 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) ⊆ (𝑋 + (𝑌 + 𝑍)))
315, 6paddasslem18 39820 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))
3230, 31eqssd 4013 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  Latclat 18489  Atomscatm 39245  HLchlt 39332  +𝑃cpadd 39778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-padd 39779
This theorem is referenced by:  padd12N  39822  padd4N  39823  pmodl42N  39834  pmapjlln1  39838
  Copyright terms: Public domain W3C validator