MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrffv Structured version   Visualization version   GIF version

Theorem pmtrffv 19067
Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
pmtrfrn.p 𝑃 = dom (𝐹 ∖ I )
Assertion
Ref Expression
pmtrffv ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))

Proof of Theorem pmtrffv
StepHypRef Expression
1 pmtrrn.t . . . . . 6 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . 6 𝑅 = ran 𝑇
3 pmtrfrn.p . . . . . 6 𝑃 = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 19066 . . . . 5 (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃)))
54simprd 496 . . . 4 (𝐹𝑅𝐹 = (𝑇𝑃))
65fveq1d 6776 . . 3 (𝐹𝑅 → (𝐹𝑍) = ((𝑇𝑃)‘𝑍))
76adantr 481 . 2 ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = ((𝑇𝑃)‘𝑍))
84simpld 495 . . 3 (𝐹𝑅 → (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o))
91pmtrfv 19060 . . 3 (((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
108, 9sylan 580 . 2 ((𝐹𝑅𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
117, 10eqtrd 2778 1 ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  wss 3887  ifcif 4459  {csn 4561   cuni 4839   class class class wbr 5074   I cid 5488  dom cdm 5589  ran crn 5590  cfv 6433  2oc2o 8291  cen 8730  pmTrspcpmtr 19049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-2o 8298  df-en 8734  df-pmtr 19050
This theorem is referenced by:  pmtrfinv  19069  pmtrdifellem3  19086  pmtrdifellem4  19087  psgnunilem1  19101
  Copyright terms: Public domain W3C validator