![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrffv | Structured version Visualization version GIF version |
Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
pmtrfrn.p | ⊢ 𝑃 = dom (𝐹 ∖ I ) |
Ref | Expression |
---|---|
pmtrffv | ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrrn.t | . . . . . 6 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | pmtrrn.r | . . . . . 6 ⊢ 𝑅 = ran 𝑇 | |
3 | pmtrfrn.p | . . . . . 6 ⊢ 𝑃 = dom (𝐹 ∖ I ) | |
4 | 1, 2, 3 | pmtrfrn 18350 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃))) |
5 | 4 | simprd 488 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → 𝐹 = (𝑇‘𝑃)) |
6 | 5 | fveq1d 6503 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐹‘𝑍) = ((𝑇‘𝑃)‘𝑍)) |
7 | 6 | adantr 473 | . 2 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = ((𝑇‘𝑃)‘𝑍)) |
8 | 4 | simpld 487 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o)) |
9 | 1 | pmtrfv 18344 | . . 3 ⊢ (((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
10 | 8, 9 | sylan 572 | . 2 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
11 | 7, 10 | eqtrd 2814 | 1 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 Vcvv 3415 ∖ cdif 3828 ⊆ wss 3831 ifcif 4351 {csn 4442 ∪ cuni 4713 class class class wbr 4930 I cid 5312 dom cdm 5408 ran crn 5409 ‘cfv 6190 2oc2o 7901 ≈ cen 8305 pmTrspcpmtr 18333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-om 7399 df-1o 7907 df-2o 7908 df-er 8091 df-en 8309 df-fin 8312 df-pmtr 18334 |
This theorem is referenced by: pmtrfinv 18353 pmtrdifellem3 18370 pmtrdifellem4 18371 psgnunilem1 18385 |
Copyright terms: Public domain | W3C validator |