MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrffv Structured version   Visualization version   GIF version

Theorem pmtrffv 19249
Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
pmtrfrn.p 𝑃 = dom (𝐹 ∖ I )
Assertion
Ref Expression
pmtrffv ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))

Proof of Theorem pmtrffv
StepHypRef Expression
1 pmtrrn.t . . . . . 6 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . 6 𝑅 = ran 𝑇
3 pmtrfrn.p . . . . . 6 𝑃 = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 19248 . . . . 5 (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃)))
54simprd 497 . . . 4 (𝐹𝑅𝐹 = (𝑇𝑃))
65fveq1d 6848 . . 3 (𝐹𝑅 → (𝐹𝑍) = ((𝑇𝑃)‘𝑍))
76adantr 482 . 2 ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = ((𝑇𝑃)‘𝑍))
84simpld 496 . . 3 (𝐹𝑅 → (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o))
91pmtrfv 19242 . . 3 (((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
108, 9sylan 581 . 2 ((𝐹𝑅𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
117, 10eqtrd 2773 1 ((𝐹𝑅𝑍𝐷) → (𝐹𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3447  cdif 3911  wss 3914  ifcif 4490  {csn 4590   cuni 4869   class class class wbr 5109   I cid 5534  dom cdm 5637  ran crn 5638  cfv 6500  2oc2o 8410  cen 8886  pmTrspcpmtr 19231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1o 8416  df-2o 8417  df-en 8890  df-pmtr 19232
This theorem is referenced by:  pmtrfinv  19251  pmtrdifellem3  19268  pmtrdifellem4  19269  psgnunilem1  19283
  Copyright terms: Public domain W3C validator