![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrffv | Structured version Visualization version GIF version |
Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
pmtrfrn.p | ⊢ 𝑃 = dom (𝐹 ∖ I ) |
Ref | Expression |
---|---|
pmtrffv | ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrrn.t | . . . . . 6 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | pmtrrn.r | . . . . . 6 ⊢ 𝑅 = ran 𝑇 | |
3 | pmtrfrn.p | . . . . . 6 ⊢ 𝑃 = dom (𝐹 ∖ I ) | |
4 | 1, 2, 3 | pmtrfrn 19500 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃))) |
5 | 4 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → 𝐹 = (𝑇‘𝑃)) |
6 | 5 | fveq1d 6922 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐹‘𝑍) = ((𝑇‘𝑃)‘𝑍)) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = ((𝑇‘𝑃)‘𝑍)) |
8 | 4 | simpld 494 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o)) |
9 | 1 | pmtrfv 19494 | . . 3 ⊢ (((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
10 | 8, 9 | sylan 579 | . 2 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
11 | 7, 10 | eqtrd 2780 | 1 ⊢ ((𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷) → (𝐹‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ifcif 4548 {csn 4648 ∪ cuni 4931 class class class wbr 5166 I cid 5592 dom cdm 5700 ran crn 5701 ‘cfv 6573 2oc2o 8516 ≈ cen 9000 pmTrspcpmtr 19483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-en 9004 df-pmtr 19484 |
This theorem is referenced by: pmtrfinv 19503 pmtrdifellem3 19520 pmtrdifellem4 19521 psgnunilem1 19535 |
Copyright terms: Public domain | W3C validator |