| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicod | Structured version Visualization version GIF version | ||
| Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
| Ref | Expression |
|---|---|
| elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
| 4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elico1 13412 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℝ*cxr 11276 < clt 11277 ≤ cle 11278 [,)cico 13371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-xr 11281 df-ico 13375 |
| This theorem is referenced by: fprodge1 16013 metustexhalf 24513 ply1degltel 33550 ply1degleel 33551 ply1degltlss 33552 ply1degltdimlem 33608 ply1degltdim 33609 absfico 45180 icoiccdif 45494 icoopn 45495 eliccnelico 45499 eliccelicod 45500 ge0xrre 45501 uzinico 45530 fsumge0cl 45545 limsupresico 45672 limsuppnfdlem 45673 limsupmnflem 45692 liminfresico 45743 limsup10exlem 45744 liminflelimsupuz 45757 xlimmnfvlem2 45805 icocncflimc 45861 fourierdlem41 46120 fourierdlem46 46124 fourierdlem48 46126 fouriersw 46203 fge0iccico 46342 sge0tsms 46352 sge0repnf 46358 sge0pr 46366 sge0iunmptlemre 46387 sge0rpcpnf 46393 sge0rernmpt 46394 sge0ad2en 46403 sge0xaddlem2 46406 voliunsge0lem 46444 meassre 46449 meaiuninclem 46452 omessre 46482 omeiunltfirp 46491 hoiprodcl 46519 hoicvr 46520 ovnsubaddlem1 46542 hoiprodcl3 46552 hoidmvcl 46554 hoidmv1lelem3 46565 hoidmvlelem3 46569 hoidmvlelem5 46571 hspdifhsp 46588 hoiqssbllem1 46594 hoiqssbllem2 46595 hspmbllem2 46599 volicorege0 46609 ovolval5lem1 46624 iunhoiioolem 46647 preimaicomnf 46683 mod42tp1mod8 47547 eenglngeehlnmlem2 48617 itscnhlinecirc02p 48664 |
| Copyright terms: Public domain | W3C validator |