| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicod | Structured version Visualization version GIF version | ||
| Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
| Ref | Expression |
|---|---|
| elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
| 4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elico1 13290 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 [,)cico 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-xr 11157 df-ico 13253 |
| This theorem is referenced by: fprodge1 15904 metustexhalf 24472 ply1degltel 33562 ply1degleel 33563 ply1degltlss 33564 ply1degltdimlem 33656 ply1degltdim 33657 absfico 45339 icoiccdif 45648 icoopn 45649 eliccnelico 45653 eliccelicod 45654 ge0xrre 45655 uzinico 45683 fsumge0cl 45697 limsupresico 45822 limsuppnfdlem 45823 limsupmnflem 45842 liminfresico 45893 limsup10exlem 45894 liminflelimsupuz 45907 xlimmnfvlem2 45955 icocncflimc 46011 fourierdlem41 46270 fourierdlem46 46274 fourierdlem48 46276 fouriersw 46353 fge0iccico 46492 sge0tsms 46502 sge0repnf 46508 sge0pr 46516 sge0iunmptlemre 46537 sge0rpcpnf 46543 sge0rernmpt 46544 sge0ad2en 46553 sge0xaddlem2 46556 voliunsge0lem 46594 meassre 46599 meaiuninclem 46602 omessre 46632 omeiunltfirp 46641 hoiprodcl 46669 hoicvr 46670 ovnsubaddlem1 46692 hoiprodcl3 46702 hoidmvcl 46704 hoidmv1lelem3 46715 hoidmvlelem3 46719 hoidmvlelem5 46721 hspdifhsp 46738 hoiqssbllem1 46744 hoiqssbllem2 46745 hspmbllem2 46749 volicorege0 46759 ovolval5lem1 46774 iunhoiioolem 46797 preimaicomnf 46833 mod42tp1mod8 47726 eenglngeehlnmlem2 48863 itscnhlinecirc02p 48910 |
| Copyright terms: Public domain | W3C validator |