Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elicod | Structured version Visualization version GIF version |
Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
Ref | Expression |
---|---|
elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | elico1 13131 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
8 | 1, 2, 3, 7 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5075 (class class class)co 7284 ℝ*cxr 11017 < clt 11018 ≤ cle 11019 [,)cico 13090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-xr 11022 df-ico 13094 |
This theorem is referenced by: fprodge1 15714 metustexhalf 23721 absfico 42765 icoiccdif 43069 icoopn 43070 eliccnelico 43074 eliccelicod 43075 ge0xrre 43076 uzinico 43105 fsumge0cl 43121 limsupresico 43248 limsuppnfdlem 43249 limsupmnflem 43268 liminfresico 43319 limsup10exlem 43320 liminflelimsupuz 43333 xlimmnfvlem2 43381 icocncflimc 43437 fourierdlem41 43696 fourierdlem46 43700 fourierdlem48 43702 fouriersw 43779 fge0iccico 43915 sge0tsms 43925 sge0repnf 43931 sge0pr 43939 sge0iunmptlemre 43960 sge0rpcpnf 43966 sge0rernmpt 43967 sge0ad2en 43976 sge0xaddlem2 43979 voliunsge0lem 44017 meassre 44022 meaiuninclem 44025 omessre 44055 omeiunltfirp 44064 hoiprodcl 44092 hoicvr 44093 ovnsubaddlem1 44115 hoiprodcl3 44125 hoidmvcl 44127 hoidmv1lelem3 44138 hoidmvlelem3 44142 hoidmvlelem5 44144 hspdifhsp 44161 hoiqssbllem1 44167 hoiqssbllem2 44168 hspmbllem2 44172 volicorege0 44182 ovolval5lem1 44197 iunhoiioolem 44220 preimaicomnf 44256 mod42tp1mod8 45065 eenglngeehlnmlem2 46095 itscnhlinecirc02p 46142 |
Copyright terms: Public domain | W3C validator |