![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicod | Structured version Visualization version GIF version |
Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
Ref | Expression |
---|---|
elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | elico1 13427 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
8 | 1, 2, 3, 7 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 [,)cico 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-xr 11297 df-ico 13390 |
This theorem is referenced by: fprodge1 16028 metustexhalf 24585 ply1degltel 33595 ply1degleel 33596 ply1degltlss 33597 ply1degltdimlem 33650 ply1degltdim 33651 absfico 45161 icoiccdif 45477 icoopn 45478 eliccnelico 45482 eliccelicod 45483 ge0xrre 45484 uzinico 45513 fsumge0cl 45529 limsupresico 45656 limsuppnfdlem 45657 limsupmnflem 45676 liminfresico 45727 limsup10exlem 45728 liminflelimsupuz 45741 xlimmnfvlem2 45789 icocncflimc 45845 fourierdlem41 46104 fourierdlem46 46108 fourierdlem48 46110 fouriersw 46187 fge0iccico 46326 sge0tsms 46336 sge0repnf 46342 sge0pr 46350 sge0iunmptlemre 46371 sge0rpcpnf 46377 sge0rernmpt 46378 sge0ad2en 46387 sge0xaddlem2 46390 voliunsge0lem 46428 meassre 46433 meaiuninclem 46436 omessre 46466 omeiunltfirp 46475 hoiprodcl 46503 hoicvr 46504 ovnsubaddlem1 46526 hoiprodcl3 46536 hoidmvcl 46538 hoidmv1lelem3 46549 hoidmvlelem3 46553 hoidmvlelem5 46555 hspdifhsp 46572 hoiqssbllem1 46578 hoiqssbllem2 46579 hspmbllem2 46583 volicorege0 46593 ovolval5lem1 46608 iunhoiioolem 46631 preimaicomnf 46667 mod42tp1mod8 47527 eenglngeehlnmlem2 48588 itscnhlinecirc02p 48635 |
Copyright terms: Public domain | W3C validator |