| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicod | Structured version Visualization version GIF version | ||
| Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
| Ref | Expression |
|---|---|
| elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
| 4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elico1 13309 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 [,)cico 13268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-xr 11172 df-ico 13272 |
| This theorem is referenced by: fprodge1 15920 metustexhalf 24460 ply1degltel 33536 ply1degleel 33537 ply1degltlss 33538 ply1degltdimlem 33594 ply1degltdim 33595 absfico 45196 icoiccdif 45506 icoopn 45507 eliccnelico 45511 eliccelicod 45512 ge0xrre 45513 uzinico 45541 fsumge0cl 45555 limsupresico 45682 limsuppnfdlem 45683 limsupmnflem 45702 liminfresico 45753 limsup10exlem 45754 liminflelimsupuz 45767 xlimmnfvlem2 45815 icocncflimc 45871 fourierdlem41 46130 fourierdlem46 46134 fourierdlem48 46136 fouriersw 46213 fge0iccico 46352 sge0tsms 46362 sge0repnf 46368 sge0pr 46376 sge0iunmptlemre 46397 sge0rpcpnf 46403 sge0rernmpt 46404 sge0ad2en 46413 sge0xaddlem2 46416 voliunsge0lem 46454 meassre 46459 meaiuninclem 46462 omessre 46492 omeiunltfirp 46501 hoiprodcl 46529 hoicvr 46530 ovnsubaddlem1 46552 hoiprodcl3 46562 hoidmvcl 46564 hoidmv1lelem3 46575 hoidmvlelem3 46579 hoidmvlelem5 46581 hspdifhsp 46598 hoiqssbllem1 46604 hoiqssbllem2 46605 hspmbllem2 46609 volicorege0 46619 ovolval5lem1 46634 iunhoiioolem 46657 preimaicomnf 46693 mod42tp1mod8 47587 eenglngeehlnmlem2 48724 itscnhlinecirc02p 48771 |
| Copyright terms: Public domain | W3C validator |