| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicod | Structured version Visualization version GIF version | ||
| Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
| Ref | Expression |
|---|---|
| elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
| 4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elico1 13405 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 [,)cico 13364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-xr 11273 df-ico 13368 |
| This theorem is referenced by: fprodge1 16011 metustexhalf 24495 ply1degltel 33604 ply1degleel 33605 ply1degltlss 33606 ply1degltdimlem 33662 ply1degltdim 33663 absfico 45242 icoiccdif 45553 icoopn 45554 eliccnelico 45558 eliccelicod 45559 ge0xrre 45560 uzinico 45588 fsumge0cl 45602 limsupresico 45729 limsuppnfdlem 45730 limsupmnflem 45749 liminfresico 45800 limsup10exlem 45801 liminflelimsupuz 45814 xlimmnfvlem2 45862 icocncflimc 45918 fourierdlem41 46177 fourierdlem46 46181 fourierdlem48 46183 fouriersw 46260 fge0iccico 46399 sge0tsms 46409 sge0repnf 46415 sge0pr 46423 sge0iunmptlemre 46444 sge0rpcpnf 46450 sge0rernmpt 46451 sge0ad2en 46460 sge0xaddlem2 46463 voliunsge0lem 46501 meassre 46506 meaiuninclem 46509 omessre 46539 omeiunltfirp 46548 hoiprodcl 46576 hoicvr 46577 ovnsubaddlem1 46599 hoiprodcl3 46609 hoidmvcl 46611 hoidmv1lelem3 46622 hoidmvlelem3 46626 hoidmvlelem5 46628 hspdifhsp 46645 hoiqssbllem1 46651 hoiqssbllem2 46652 hspmbllem2 46656 volicorege0 46666 ovolval5lem1 46681 iunhoiioolem 46704 preimaicomnf 46740 mod42tp1mod8 47616 eenglngeehlnmlem2 48718 itscnhlinecirc02p 48765 |
| Copyright terms: Public domain | W3C validator |