| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicod | Structured version Visualization version GIF version | ||
| Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
| Ref | Expression |
|---|---|
| elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
| 4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 6 | elico1 13285 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| 8 | 1, 2, 3, 7 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 [,)cico 13244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-xr 11147 df-ico 13248 |
| This theorem is referenced by: fprodge1 15899 metustexhalf 24469 ply1degltel 33550 ply1degleel 33551 ply1degltlss 33552 ply1degltdimlem 33630 ply1degltdim 33631 absfico 45254 icoiccdif 45563 icoopn 45564 eliccnelico 45568 eliccelicod 45569 ge0xrre 45570 uzinico 45598 fsumge0cl 45612 limsupresico 45737 limsuppnfdlem 45738 limsupmnflem 45757 liminfresico 45808 limsup10exlem 45809 liminflelimsupuz 45822 xlimmnfvlem2 45870 icocncflimc 45926 fourierdlem41 46185 fourierdlem46 46189 fourierdlem48 46191 fouriersw 46268 fge0iccico 46407 sge0tsms 46417 sge0repnf 46423 sge0pr 46431 sge0iunmptlemre 46452 sge0rpcpnf 46458 sge0rernmpt 46459 sge0ad2en 46468 sge0xaddlem2 46471 voliunsge0lem 46509 meassre 46514 meaiuninclem 46517 omessre 46547 omeiunltfirp 46556 hoiprodcl 46584 hoicvr 46585 ovnsubaddlem1 46607 hoiprodcl3 46617 hoidmvcl 46619 hoidmv1lelem3 46630 hoidmvlelem3 46634 hoidmvlelem5 46636 hspdifhsp 46653 hoiqssbllem1 46659 hoiqssbllem2 46660 hspmbllem2 46664 volicorege0 46674 ovolval5lem1 46689 iunhoiioolem 46712 preimaicomnf 46748 mod42tp1mod8 47632 eenglngeehlnmlem2 48769 itscnhlinecirc02p 48816 |
| Copyright terms: Public domain | W3C validator |