MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglimg Structured version   Visualization version   GIF version

Theorem rdglimg 8059
Description: The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 16-Nov-2014.)
Assertion
Ref Expression
rdglimg ((𝐵 ∈ dom rec(𝐹, 𝐴) ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = (rec(𝐹, 𝐴) “ 𝐵))

Proof of Theorem rdglimg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . 2 (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))
2 rdgvalg 8053 . 2 (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦)))
3 rdgseg 8056 . 2 (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝑦) ∈ V)
4 rdgfun 8050 . . 3 Fun rec(𝐹, 𝐴)
5 funfn 6375 . . 3 (Fun rec(𝐹, 𝐴) ↔ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴))
64, 5mpbi 233 . 2 rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴)
7 rdgdmlim 8051 . . 3 Lim dom rec(𝐹, 𝐴)
8 limord 6239 . . 3 (Lim dom rec(𝐹, 𝐴) → Ord dom rec(𝐹, 𝐴))
97, 8ax-mp 5 . 2 Ord dom rec(𝐹, 𝐴)
101, 2, 3, 6, 9tz7.44-3 8042 1 ((𝐵 ∈ dom rec(𝐹, 𝐴) ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = (rec(𝐹, 𝐴) “ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  c0 4276  ifcif 4450   cuni 4824  cmpt 5133  dom cdm 5543  ran crn 5544  cima 5546  Ord word 6179  Lim wlim 6181  Fun wfun 6339   Fn wfn 6340  cfv 6345  reccrdg 8043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-wrecs 7945  df-recs 8006  df-rdg 8044
This theorem is referenced by:  rdglim  8060  r1limg  9199
  Copyright terms: Public domain W3C validator