| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgsucg | Structured version Visualization version GIF version | ||
| Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdgsucg | ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim 8346 | . . 3 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 2 | limsuc 7789 | . . 3 ⊢ (Lim dom rec(𝐹, 𝐴) → (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴)) |
| 4 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
| 5 | rdgvalg 8348 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦))) | |
| 6 | rdgseg 8351 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝑦) ∈ V) | |
| 7 | rdgfun 8345 | . . . 4 ⊢ Fun rec(𝐹, 𝐴) | |
| 8 | funfn 6516 | . . . 4 ⊢ (Fun rec(𝐹, 𝐴) ↔ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴)) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴) |
| 10 | limord 6372 | . . . 4 ⊢ (Lim dom rec(𝐹, 𝐴) → Ord dom rec(𝐹, 𝐴)) | |
| 11 | 1, 10 | ax-mp 5 | . . 3 ⊢ Ord dom rec(𝐹, 𝐴) |
| 12 | 4, 5, 6, 9, 11 | tz7.44-2 8336 | . 2 ⊢ (suc 𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| 13 | 3, 12 | sylbi 217 | 1 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ifcif 4478 ∪ cuni 4861 ↦ cmpt 5176 dom cdm 5623 ran crn 5624 Ord word 6310 Lim wlim 6312 suc csuc 6313 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 reccrdg 8338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 |
| This theorem is referenced by: rdgsuc 8353 rdgsucmptnf 8358 frsuc 8366 r1sucg 9684 |
| Copyright terms: Public domain | W3C validator |