MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucg Structured version   Visualization version   GIF version

Theorem rdgsucg 8252
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014.)
Assertion
Ref Expression
rdgsucg (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))

Proof of Theorem rdgsucg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgdmlim 8246 . . 3 Lim dom rec(𝐹, 𝐴)
2 limsuc 7696 . . 3 (Lim dom rec(𝐹, 𝐴) → (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴)))
31, 2ax-mp 5 . 2 (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴))
4 eqid 2738 . . 3 (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))
5 rdgvalg 8248 . . 3 (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦)))
6 rdgseg 8251 . . 3 (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝑦) ∈ V)
7 rdgfun 8245 . . . 4 Fun rec(𝐹, 𝐴)
8 funfn 6466 . . . 4 (Fun rec(𝐹, 𝐴) ↔ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴))
97, 8mpbi 229 . . 3 rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴)
10 limord 6327 . . . 4 (Lim dom rec(𝐹, 𝐴) → Ord dom rec(𝐹, 𝐴))
111, 10ax-mp 5 . . 3 Ord dom rec(𝐹, 𝐴)
124, 5, 6, 9, 11tz7.44-2 8236 . 2 (suc 𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
133, 12sylbi 216 1 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  Vcvv 3431  c0 4258  ifcif 4461   cuni 4841  cmpt 5159  dom cdm 5591  ran crn 5592  Ord word 6267  Lim wlim 6269  suc csuc 6270  Fun wfun 6429   Fn wfn 6430  cfv 6435  reccrdg 8238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-ov 7280  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239
This theorem is referenced by:  rdgsuc  8253  rdgsucmptnf  8258  frsuc  8266  r1sucg  9525
  Copyright terms: Public domain W3C validator