MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucg Structured version   Visualization version   GIF version

Theorem rdgsucg 7802
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014.)
Assertion
Ref Expression
rdgsucg (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))

Proof of Theorem rdgsucg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgdmlim 7796 . . 3 Lim dom rec(𝐹, 𝐴)
2 limsuc 7327 . . 3 (Lim dom rec(𝐹, 𝐴) → (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴)))
31, 2ax-mp 5 . 2 (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴))
4 eqid 2777 . . 3 (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))
5 rdgvalg 7798 . . 3 (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦)))
6 rdgseg 7801 . . 3 (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝑦) ∈ V)
7 rdgfun 7795 . . . 4 Fun rec(𝐹, 𝐴)
8 funfn 6165 . . . 4 (Fun rec(𝐹, 𝐴) ↔ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴))
97, 8mpbi 222 . . 3 rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴)
10 limord 6035 . . . 4 (Lim dom rec(𝐹, 𝐴) → Ord dom rec(𝐹, 𝐴))
111, 10ax-mp 5 . . 3 Ord dom rec(𝐹, 𝐴)
124, 5, 6, 9, 11tz7.44-2 7786 . 2 (suc 𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
133, 12sylbi 209 1 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2106  Vcvv 3397  c0 4140  ifcif 4306   cuni 4671  cmpt 4965  dom cdm 5355  ran crn 5356  Ord word 5975  Lim wlim 5977  suc csuc 5978  Fun wfun 6129   Fn wfn 6130  cfv 6135  reccrdg 7788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-wrecs 7689  df-recs 7751  df-rdg 7789
This theorem is referenced by:  rdgsuc  7803  rdgsucmptnf  7808  frsuc  7815  r1sucg  8929
  Copyright terms: Public domain W3C validator