| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgsucg | Structured version Visualization version GIF version | ||
| Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| rdgsucg | ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim 8342 | . . 3 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 2 | limsuc 7785 | . . 3 ⊢ (Lim dom rec(𝐹, 𝐴) → (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴)) |
| 4 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
| 5 | rdgvalg 8344 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦))) | |
| 6 | rdgseg 8347 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝑦) ∈ V) | |
| 7 | rdgfun 8341 | . . . 4 ⊢ Fun rec(𝐹, 𝐴) | |
| 8 | funfn 6516 | . . . 4 ⊢ (Fun rec(𝐹, 𝐴) ↔ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴)) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴) |
| 10 | limord 6372 | . . . 4 ⊢ (Lim dom rec(𝐹, 𝐴) → Ord dom rec(𝐹, 𝐴)) | |
| 11 | 1, 10 | ax-mp 5 | . . 3 ⊢ Ord dom rec(𝐹, 𝐴) |
| 12 | 4, 5, 6, 9, 11 | tz7.44-2 8332 | . 2 ⊢ (suc 𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| 13 | 3, 12 | sylbi 217 | 1 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ifcif 4474 ∪ cuni 4858 ↦ cmpt 5174 dom cdm 5619 ran crn 5620 Ord word 6310 Lim wlim 6312 suc csuc 6313 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 reccrdg 8334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 |
| This theorem is referenced by: rdgsuc 8349 rdgsucmptnf 8354 frsuc 8362 r1sucg 9669 |
| Copyright terms: Public domain | W3C validator |