MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2a Structured version   Visualization version   GIF version

Theorem tfr2a 8197
Description: A weak version of tfr2 8200 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2a (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))

Proof of Theorem tfr2a
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem9 8187 . . 3 (𝐴 ∈ dom recs(𝐺) → (recs(𝐺)‘𝐴) = (𝐺‘(recs(𝐺) ↾ 𝐴)))
3 tfr.1 . . . 4 𝐹 = recs(𝐺)
43dmeqi 5802 . . 3 dom 𝐹 = dom recs(𝐺)
52, 4eleq2s 2857 . 2 (𝐴 ∈ dom 𝐹 → (recs(𝐺)‘𝐴) = (𝐺‘(recs(𝐺) ↾ 𝐴)))
63fveq1i 6757 . 2 (𝐹𝐴) = (recs(𝐺)‘𝐴)
73reseq1i 5876 . . 3 (𝐹𝐴) = (recs(𝐺) ↾ 𝐴)
87fveq2i 6759 . 2 (𝐺‘(𝐹𝐴)) = (𝐺‘(recs(𝐺) ↾ 𝐴))
95, 6, 83eqtr4g 2804 1 (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  dom cdm 5580  cres 5582  Oncon0 6251   Fn wfn 6413  cfv 6418  recscrecs 8172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173
This theorem is referenced by:  tfr2  8200  rdgvalg  8221  ordtypelem3  9209
  Copyright terms: Public domain W3C validator