MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repos Structured version   Visualization version   GIF version

Theorem repos 12516
Description: Two ways of saying that a real number is positive. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
repos (𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem repos
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 4845 . 2 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 ioopos 12495 . 2 (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
31, 2elrab2 3558 1 (𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385  wcel 2157   class class class wbr 4841  (class class class)co 6876  cr 10221  0cc0 10222  +∞cpnf 10358   < clt 10361  (,)cioo 12420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-addrcl 10283  ax-rnegex 10293  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-1st 7399  df-2nd 7400  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-ioo 12424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator