MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repos Structured version   Visualization version   GIF version

Theorem repos 13447
Description: Two ways of saying that a real number is positive. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
repos (𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem repos
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5146 . 2 (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴))
2 ioopos 13425 . 2 (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
31, 2elrab2 3683 1 (𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2099   class class class wbr 5142  (class class class)co 7414  cr 11129  0cc0 11130  +∞cpnf 11267   < clt 11270  (,)cioo 13348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-addrcl 11191  ax-rnegex 11201  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-ioo 13352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator