MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscat Structured version   Visualization version   GIF version

Theorem resscat 17898
Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
resscat ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s 𝑆) ∈ Cat)

Proof of Theorem resscat
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝐶) = (Base‘𝐶)
21ressinbas 17292 . . 3 (𝑆𝑉 → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
32adantl 481 . 2 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
4 eqid 2736 . . . 4 (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) = (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))
5 eqid 2736 . . . . 5 (Homf𝐶) = (Homf𝐶)
6 simpl 482 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐶 ∈ Cat)
7 inss2 4237 . . . . . 6 (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)
87a1i 11 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶))
91, 5, 6, 8fullsubc 17896 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶))
104, 9subccat 17894 . . 3 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat)
11 eqid 2736 . . . . . 6 (𝐶s (𝑆 ∩ (Base‘𝐶))) = (𝐶s (𝑆 ∩ (Base‘𝐶)))
121, 5, 6, 8, 11, 4fullresc 17897 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ((Homf ‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ∧ (compf‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))))
1312simpld 494 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf ‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
1412simprd 495 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
15 ovexd 7467 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s (𝑆 ∩ (Base‘𝐶))) ∈ V)
1613, 14, 15, 10catpropd 17753 . . 3 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ((𝐶s (𝑆 ∩ (Base‘𝐶))) ∈ Cat ↔ (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat))
1710, 16mpbird 257 . 2 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s (𝑆 ∩ (Base‘𝐶))) ∈ Cat)
183, 17eqeltrd 2840 1 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s 𝑆) ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  cin 3949  wss 3950   × cxp 5682  cres 5686  cfv 6560  (class class class)co 7432  Basecbs 17248  s cress 17275  Catccat 17708  Homf chomf 17710  compfccomf 17711  cat cresc 17853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-hom 17322  df-cco 17323  df-cat 17712  df-cid 17713  df-homf 17714  df-comf 17715  df-ssc 17855  df-resc 17856  df-subc 17857
This theorem is referenced by:  ressffth  17986
  Copyright terms: Public domain W3C validator