Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resscat | Structured version Visualization version GIF version |
Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
resscat | ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | 1 | ressinbas 17000 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
3 | 2 | adantl 483 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
4 | eqid 2736 | . . . 4 ⊢ (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) = (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) | |
5 | eqid 2736 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
6 | simpl 484 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐶 ∈ Cat) | |
7 | inss2 4169 | . . . . . 6 ⊢ (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)) |
9 | 1, 5, 6, 8 | fullsubc 17610 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶)) |
10 | 4, 9 | subccat 17608 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat) |
11 | eqid 2736 | . . . . . 6 ⊢ (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) | |
12 | 1, 5, 6, 8, 11, 4 | fullresc 17611 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ∧ (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))) |
13 | 12 | simpld 496 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
14 | 12 | simprd 497 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
15 | ovexd 7342 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ V) | |
16 | 13, 14, 15, 10 | catpropd 17463 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ Cat ↔ (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat)) |
17 | 10, 16 | mpbird 257 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ Cat) |
18 | 3, 17 | eqeltrd 2837 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∩ cin 3891 ⊆ wss 3892 × cxp 5598 ↾ cres 5602 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 ↾s cress 16986 Catccat 17418 Homf chomf 17420 compfccomf 17421 ↾cat cresc 17565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-hom 17031 df-cco 17032 df-cat 17422 df-cid 17423 df-homf 17424 df-comf 17425 df-ssc 17567 df-resc 17568 df-subc 17569 |
This theorem is referenced by: ressffth 17699 |
Copyright terms: Public domain | W3C validator |