Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resscat | Structured version Visualization version GIF version |
Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
resscat | ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | 1 | ressinbas 16965 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
3 | 2 | adantl 482 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
4 | eqid 2738 | . . . 4 ⊢ (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) = (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) | |
5 | eqid 2738 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
6 | simpl 483 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐶 ∈ Cat) | |
7 | inss2 4163 | . . . . . 6 ⊢ (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)) |
9 | 1, 5, 6, 8 | fullsubc 17575 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶)) |
10 | 4, 9 | subccat 17573 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat) |
11 | eqid 2738 | . . . . . 6 ⊢ (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) | |
12 | 1, 5, 6, 8, 11, 4 | fullresc 17576 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ∧ (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))) |
13 | 12 | simpld 495 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
14 | 12 | simprd 496 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
15 | ovexd 7302 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ V) | |
16 | 13, 14, 15, 10 | catpropd 17428 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ Cat ↔ (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat)) |
17 | 10, 16 | mpbird 256 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ Cat) |
18 | 3, 17 | eqeltrd 2839 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3429 ∩ cin 3885 ⊆ wss 3886 × cxp 5582 ↾ cres 5586 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 ↾s cress 16951 Catccat 17383 Homf chomf 17385 compfccomf 17386 ↾cat cresc 17530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-hom 16996 df-cco 16997 df-cat 17387 df-cid 17388 df-homf 17389 df-comf 17390 df-ssc 17532 df-resc 17533 df-subc 17534 |
This theorem is referenced by: ressffth 17664 |
Copyright terms: Public domain | W3C validator |