| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resscat | Structured version Visualization version GIF version | ||
| Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| resscat | ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | 1 | ressinbas 17271 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
| 4 | eqid 2736 | . . . 4 ⊢ (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) = (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐶 ∈ Cat) | |
| 7 | inss2 4218 | . . . . . 6 ⊢ (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)) |
| 9 | 1, 5, 6, 8 | fullsubc 17868 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶)) |
| 10 | 4, 9 | subccat 17866 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat) |
| 11 | eqid 2736 | . . . . . 6 ⊢ (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) | |
| 12 | 1, 5, 6, 8, 11, 4 | fullresc 17869 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ∧ (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))) |
| 13 | 12 | simpld 494 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 14 | 12 | simprd 495 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 15 | ovexd 7445 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ V) | |
| 16 | 13, 14, 15, 10 | catpropd 17726 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ Cat ↔ (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat)) |
| 17 | 10, 16 | mpbird 257 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ Cat) |
| 18 | 3, 17 | eqeltrd 2835 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 × cxp 5657 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 Catccat 17681 Homf chomf 17683 compfccomf 17684 ↾cat cresc 17826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-homf 17687 df-comf 17688 df-ssc 17828 df-resc 17829 df-subc 17830 |
| This theorem is referenced by: ressffth 17958 |
| Copyright terms: Public domain | W3C validator |