| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resscat | Structured version Visualization version GIF version | ||
| Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| resscat | ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | 1 | ressinbas 17292 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) |
| 4 | eqid 2736 | . . . 4 ⊢ (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) = (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → 𝐶 ∈ Cat) | |
| 7 | inss2 4237 | . . . . . 6 ⊢ (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)) |
| 9 | 1, 5, 6, 8 | fullsubc 17896 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶)) |
| 10 | 4, 9 | subccat 17894 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat) |
| 11 | eqid 2736 | . . . . . 6 ⊢ (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) = (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) | |
| 12 | 1, 5, 6, 8, 11, 4 | fullresc 17897 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ∧ (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))) |
| 13 | 12 | simpld 494 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (Homf ‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 14 | 12 | simprd 495 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (compf‘(𝐶 ↾s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))) |
| 15 | ovexd 7467 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ V) | |
| 16 | 13, 14, 15, 10 | catpropd 17753 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → ((𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ Cat ↔ (𝐶 ↾cat ((Homf ‘𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ Cat)) |
| 17 | 10, 16 | mpbird 257 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s (𝑆 ∩ (Base‘𝐶))) ∈ Cat) |
| 18 | 3, 17 | eqeltrd 2840 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉) → (𝐶 ↾s 𝑆) ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∩ cin 3949 ⊆ wss 3950 × cxp 5682 ↾ cres 5686 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 ↾s cress 17275 Catccat 17708 Homf chomf 17710 compfccomf 17711 ↾cat cresc 17853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-hom 17322 df-cco 17323 df-cat 17712 df-cid 17713 df-homf 17714 df-comf 17715 df-ssc 17855 df-resc 17856 df-subc 17857 |
| This theorem is referenced by: ressffth 17986 |
| Copyright terms: Public domain | W3C validator |