MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2c Structured version   Visualization version   GIF version

Theorem funcres2c 17802
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
funcres2c.a 𝐴 = (Base‘𝐶)
funcres2c.e 𝐸 = (𝐷s 𝑆)
funcres2c.d (𝜑𝐷 ∈ Cat)
funcres2c.r (𝜑𝑆𝑉)
funcres2c.1 (𝜑𝐹:𝐴𝑆)
Assertion
Ref Expression
funcres2c (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))

Proof of Theorem funcres2c
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 867 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
21a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
3 olc 868 . . 3 (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
43a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
5 funcres2c.a . . . . 5 𝐴 = (Base‘𝐶)
6 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
7 eqid 2730 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
8 eqid 2730 . . . . . . 7 (Homf𝐷) = (Homf𝐷)
9 funcres2c.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
10 inss2 4186 . . . . . . . 8 (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)
1110a1i 11 . . . . . . 7 (𝜑 → (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷))
127, 8, 9, 11fullsubc 17749 . . . . . 6 (𝜑 → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷))
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷))
148, 7homffn 17591 . . . . . . 7 (Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))
15 xpss12 5629 . . . . . . . 8 (((𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷) ∧ (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)) → ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷)))
1610, 10, 15mp2an 692 . . . . . . 7 ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))
17 fnssres 6600 . . . . . . 7 (((Homf𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))
1814, 16, 17mp2an 692 . . . . . 6 ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))
1918a1i 11 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))
20 funcres2c.1 . . . . . . . 8 (𝜑𝐹:𝐴𝑆)
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴𝑆)
2221ffnd 6648 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹 Fn 𝐴)
2321frnd 6655 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹𝑆)
24 simpr 484 . . . . . . . . . 10 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺)
255, 7, 24funcf1 17765 . . . . . . . . 9 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → 𝐹:𝐴⟶(Base‘𝐷))
2625frnd 6655 . . . . . . . 8 ((𝜑𝐹(𝐶 Func 𝐷)𝐺) → ran 𝐹 ⊆ (Base‘𝐷))
27 eqid 2730 . . . . . . . . . . 11 (Base‘𝐸) = (Base‘𝐸)
28 simpr 484 . . . . . . . . . . 11 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺)
295, 27, 28funcf1 17765 . . . . . . . . . 10 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → 𝐹:𝐴⟶(Base‘𝐸))
3029frnd 6655 . . . . . . . . 9 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐸))
31 funcres2c.e . . . . . . . . . 10 𝐸 = (𝐷s 𝑆)
3231, 7ressbasss 17142 . . . . . . . . 9 (Base‘𝐸) ⊆ (Base‘𝐷)
3330, 32sstrdi 3945 . . . . . . . 8 ((𝜑𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐷))
3426, 33jaodan 959 . . . . . . 7 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (Base‘𝐷))
3523, 34ssind 4189 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷)))
36 df-f 6481 . . . . . 6 (𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷))))
3722, 35, 36sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)))
38 eqid 2730 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
39 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺)
40 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑥𝐴)
41 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑦𝐴)
425, 6, 38, 39, 40, 41funcf2 17767 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
43 eqid 2730 . . . . . . . . . 10 (Hom ‘𝐸) = (Hom ‘𝐸)
44 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺)
45 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑥𝐴)
46 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑦𝐴)
475, 6, 43, 44, 45, 46funcf2 17767 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦)))
48 funcres2c.r . . . . . . . . . . . . 13 (𝜑𝑆𝑉)
4931, 38resshom 17314 . . . . . . . . . . . . 13 (𝑆𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸))
5048, 49syl 17 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸))
5150ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (Hom ‘𝐷) = (Hom ‘𝐸))
5251oveqd 7358 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦)))
5352feq3d 6632 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦))))
5447, 53mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
5542, 54jaodan 959 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
5655an32s 652 . . . . . 6 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
5737adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)))
58 simprl 770 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
5957, 58ffvelcdmd 7013 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑥) ∈ (𝑆 ∩ (Base‘𝐷)))
60 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
6157, 60ffvelcdmd 7013 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑦) ∈ (𝑆 ∩ (Base‘𝐷)))
6259, 61ovresd 7508 . . . . . . . 8 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) = ((𝐹𝑥)(Homf𝐷)(𝐹𝑦)))
6359elin2d 4153 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑥) ∈ (Base‘𝐷))
6461elin2d 4153 . . . . . . . . 9 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑦) ∈ (Base‘𝐷))
658, 7, 38, 63, 64homfval 17590 . . . . . . . 8 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)(Homf𝐷)(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
6662, 65eqtrd 2765 . . . . . . 7 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
6766feq3d 6632 . . . . . 6 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
6856, 67mpbird 257 . . . . 5 (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹𝑥)((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹𝑦)))
695, 6, 13, 19, 37, 68funcres2b 17796 . . . 4 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺))
70 eqidd 2731 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (Homf𝐶) = (Homf𝐶))
71 eqidd 2731 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (compf𝐶) = (compf𝐶))
727ressinbas 17148 . . . . . . . . . . 11 (𝑆𝑉 → (𝐷s 𝑆) = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7348, 72syl 17 . . . . . . . . . 10 (𝜑 → (𝐷s 𝑆) = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7431, 73eqtrid 2777 . . . . . . . . 9 (𝜑𝐸 = (𝐷s (𝑆 ∩ (Base‘𝐷))))
7574fveq2d 6821 . . . . . . . 8 (𝜑 → (Homf𝐸) = (Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))))
76 eqid 2730 . . . . . . . . . 10 (𝐷s (𝑆 ∩ (Base‘𝐷))) = (𝐷s (𝑆 ∩ (Base‘𝐷)))
77 eqid 2730 . . . . . . . . . 10 (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) = (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))
787, 8, 9, 11, 76, 77fullresc 17750 . . . . . . . . 9 (𝜑 → ((Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))) ∧ (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))))
7978simpld 494 . . . . . . . 8 (𝜑 → (Homf ‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8075, 79eqtrd 2765 . . . . . . 7 (𝜑 → (Homf𝐸) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8180adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (Homf𝐸) = (Homf ‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8274fveq2d 6821 . . . . . . . 8 (𝜑 → (compf𝐸) = (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))))
8378simprd 495 . . . . . . . 8 (𝜑 → (compf‘(𝐷s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8482, 83eqtrd 2765 . . . . . . 7 (𝜑 → (compf𝐸) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
8584adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (compf𝐸) = (compf‘(𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
86 df-br 5090 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
87 funcrcl 17762 . . . . . . . . . . 11 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
8886, 87sylbi 217 . . . . . . . . . 10 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
8988simpld 494 . . . . . . . . 9 (𝐹(𝐶 Func 𝐷)𝐺𝐶 ∈ Cat)
90 df-br 5090 . . . . . . . . . . 11 (𝐹(𝐶 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸))
91 funcrcl 17762 . . . . . . . . . . 11 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
9290, 91sylbi 217 . . . . . . . . . 10 (𝐹(𝐶 Func 𝐸)𝐺 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat))
9392simpld 494 . . . . . . . . 9 (𝐹(𝐶 Func 𝐸)𝐺𝐶 ∈ Cat)
9489, 93jaoi 857 . . . . . . . 8 ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ Cat)
9594elexd 3458 . . . . . . 7 ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ V)
9695adantl 481 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐶 ∈ V)
9731ovexi 7375 . . . . . . 7 𝐸 ∈ V
9897a1i 11 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → 𝐸 ∈ V)
99 ovexd 7376 . . . . . 6 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) ∈ V)
10070, 71, 81, 85, 96, 96, 98, 99funcpropd 17801 . . . . 5 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐶 Func 𝐸) = (𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))
101100breqd 5100 . . . 4 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐸)𝐺𝐹(𝐶 Func (𝐷cat ((Homf𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺))
10269, 101bitr4d 282 . . 3 ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
103102ex 412 . 2 (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺)))
1042, 4, 103pm5.21ndd 379 1 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2110  Vcvv 3434  cin 3899  wss 3900  cop 4580   class class class wbr 5089   × cxp 5612  ran crn 5615  cres 5616   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  Basecbs 17112  s cress 17133  Hom chom 17164  Catccat 17562  Homf chomf 17564  compfccomf 17565  cat cresc 17707  Subcatcsubc 17708   Func cfunc 17753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-hom 17177  df-cco 17178  df-cat 17566  df-cid 17567  df-homf 17568  df-comf 17569  df-ssc 17709  df-resc 17710  df-subc 17711  df-func 17757
This theorem is referenced by:  fthres2c  17832  fullres2c  17840
  Copyright terms: Public domain W3C validator