Step | Hyp | Ref
| Expression |
1 | | orc 867 |
. . 3
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺))) |
3 | | olc 868 |
. . 3
⊢ (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) |
4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → (𝐹(𝐶 Func 𝐸)𝐺 → (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺))) |
5 | | funcres2c.a |
. . . . 5
⊢ 𝐴 = (Base‘𝐶) |
6 | | eqid 2737 |
. . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
7 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
8 | | eqid 2737 |
. . . . . . 7
⊢
(Homf ‘𝐷) = (Homf ‘𝐷) |
9 | | funcres2c.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
10 | | inss2 4144 |
. . . . . . . 8
⊢ (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷) |
11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)) |
12 | 7, 8, 9, 11 | fullsubc 17356 |
. . . . . 6
⊢ (𝜑 → ((Homf
‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷)) |
13 | 12 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf
‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) ∈ (Subcat‘𝐷)) |
14 | 8, 7 | homffn 17196 |
. . . . . . 7
⊢
(Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) |
15 | | xpss12 5566 |
. . . . . . . 8
⊢ (((𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷) ∧ (𝑆 ∩ (Base‘𝐷)) ⊆ (Base‘𝐷)) → ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))) |
16 | 10, 10, 15 | mp2an 692 |
. . . . . . 7
⊢ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷)) |
17 | | fnssres 6500 |
. . . . . . 7
⊢
(((Homf ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ∧ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) ⊆ ((Base‘𝐷) × (Base‘𝐷))) → ((Homf
‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) |
18 | 14, 16, 17 | mp2an 692 |
. . . . . 6
⊢
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))) |
19 | 18 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ((Homf
‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) Fn ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))) |
20 | | funcres2c.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
21 | 20 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴⟶𝑆) |
22 | 21 | ffnd 6546 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹 Fn 𝐴) |
23 | 21 | frnd 6553 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ 𝑆) |
24 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺) |
25 | 5, 7, 24 | funcf1 17372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹:𝐴⟶(Base‘𝐷)) |
26 | 25 | frnd 6553 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐷)𝐺) → ran 𝐹 ⊆ (Base‘𝐷)) |
27 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝐸) =
(Base‘𝐸) |
28 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺) |
29 | 5, 27, 28 | funcf1 17372 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹:𝐴⟶(Base‘𝐸)) |
30 | 29 | frnd 6553 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐸)) |
31 | | funcres2c.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝐷 ↾s 𝑆) |
32 | 31, 7 | ressbasss 16792 |
. . . . . . . . 9
⊢
(Base‘𝐸)
⊆ (Base‘𝐷) |
33 | 30, 32 | sstrdi 3913 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ran 𝐹 ⊆ (Base‘𝐷)) |
34 | 26, 33 | jaodan 958 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (Base‘𝐷)) |
35 | 23, 34 | ssind 4147 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷))) |
36 | | df-f 6384 |
. . . . . 6
⊢ (𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝑆 ∩ (Base‘𝐷)))) |
37 | 22, 35, 36 | sylanbrc 586 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷))) |
38 | | eqid 2737 |
. . . . . . . . 9
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
39 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝐹(𝐶 Func 𝐷)𝐺) |
40 | | simplrl 777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑥 ∈ 𝐴) |
41 | | simplrr 778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → 𝑦 ∈ 𝐴) |
42 | 5, 6, 38, 39, 40, 41 | funcf2 17374 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
43 | | eqid 2737 |
. . . . . . . . . 10
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
44 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐹(𝐶 Func 𝐸)𝐺) |
45 | | simplrl 777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑥 ∈ 𝐴) |
46 | | simplrr 778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → 𝑦 ∈ 𝐴) |
47 | 5, 6, 43, 44, 45, 46 | funcf2 17374 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
48 | | funcres2c.r |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
49 | 31, 38 | resshom 16923 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
51 | 50 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (Hom ‘𝐷) = (Hom ‘𝐸)) |
52 | 51 | oveqd 7230 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
53 | 52 | feq3d 6532 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
54 | 47, 53 | mpbird 260 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐶 Func 𝐸)𝐺) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
55 | 42, 54 | jaodan 958 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
56 | 55 | an32s 652 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
57 | 37 | adantr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝐹:𝐴⟶(𝑆 ∩ (Base‘𝐷))) |
58 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
59 | 57, 58 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐹‘𝑥) ∈ (𝑆 ∩ (Base‘𝐷))) |
60 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
61 | 57, 60 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐹‘𝑦) ∈ (𝑆 ∩ (Base‘𝐷))) |
62 | 59, 61 | ovresd 7375 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥)((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹‘𝑦)) = ((𝐹‘𝑥)(Homf ‘𝐷)(𝐹‘𝑦))) |
63 | 59 | elin2d 4113 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
64 | 61 | elin2d 4113 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐹‘𝑦) ∈ (Base‘𝐷)) |
65 | 8, 7, 38, 63, 64 | homfval 17195 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥)(Homf ‘𝐷)(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
66 | 62, 65 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥)((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
67 | 66 | feq3d 6532 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹‘𝑦)) ↔ (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
68 | 56, 67 | mpbird 260 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝐹‘𝑥)((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))(𝐹‘𝑦))) |
69 | 5, 6, 13, 19, 37, 68 | funcres2b 17403 |
. . . 4
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺)) |
70 | | eqidd 2738 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (Homf
‘𝐶) =
(Homf ‘𝐶)) |
71 | | eqidd 2738 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) →
(compf‘𝐶) = (compf‘𝐶)) |
72 | 7 | ressinbas 16797 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝑉 → (𝐷 ↾s 𝑆) = (𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) |
73 | 48, 72 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐷 ↾s 𝑆) = (𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) |
74 | 31, 73 | syl5eq 2790 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 = (𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) |
75 | 74 | fveq2d 6721 |
. . . . . . . 8
⊢ (𝜑 → (Homf
‘𝐸) =
(Homf ‘(𝐷 ↾s (𝑆 ∩ (Base‘𝐷))))) |
76 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝐷 ↾s (𝑆 ∩ (Base‘𝐷))) = (𝐷 ↾s (𝑆 ∩ (Base‘𝐷))) |
77 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) = (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) |
78 | 7, 8, 9, 11, 76, 77 | fullresc 17357 |
. . . . . . . . 9
⊢ (𝜑 → ((Homf
‘(𝐷
↾s (𝑆
∩ (Base‘𝐷)))) =
(Homf ‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))) ∧
(compf‘(𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷)))))))) |
79 | 78 | simpld 498 |
. . . . . . . 8
⊢ (𝜑 → (Homf
‘(𝐷
↾s (𝑆
∩ (Base‘𝐷)))) =
(Homf ‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
80 | 75, 79 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → (Homf
‘𝐸) =
(Homf ‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
81 | 80 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (Homf
‘𝐸) =
(Homf ‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
82 | 74 | fveq2d 6721 |
. . . . . . . 8
⊢ (𝜑 →
(compf‘𝐸) = (compf‘(𝐷 ↾s (𝑆 ∩ (Base‘𝐷))))) |
83 | 78 | simprd 499 |
. . . . . . . 8
⊢ (𝜑 →
(compf‘(𝐷 ↾s (𝑆 ∩ (Base‘𝐷)))) = (compf‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
84 | 82, 83 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 →
(compf‘𝐸) = (compf‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
85 | 84 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) →
(compf‘𝐸) = (compf‘(𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
86 | | df-br 5054 |
. . . . . . . . . . 11
⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
87 | | funcrcl 17369 |
. . . . . . . . . . 11
⊢
(〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
88 | 86, 87 | sylbi 220 |
. . . . . . . . . 10
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
89 | 88 | simpld 498 |
. . . . . . . . 9
⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐶 ∈ Cat) |
90 | | df-br 5054 |
. . . . . . . . . . 11
⊢ (𝐹(𝐶 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐸)) |
91 | | funcrcl 17369 |
. . . . . . . . . . 11
⊢
(〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐸) → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat)) |
92 | 90, 91 | sylbi 220 |
. . . . . . . . . 10
⊢ (𝐹(𝐶 Func 𝐸)𝐺 → (𝐶 ∈ Cat ∧ 𝐸 ∈ Cat)) |
93 | 92 | simpld 498 |
. . . . . . . . 9
⊢ (𝐹(𝐶 Func 𝐸)𝐺 → 𝐶 ∈ Cat) |
94 | 89, 93 | jaoi 857 |
. . . . . . . 8
⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ Cat) |
95 | 94 | elexd 3428 |
. . . . . . 7
⊢ ((𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺) → 𝐶 ∈ V) |
96 | 95 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐶 ∈ V) |
97 | 31 | ovexi 7247 |
. . . . . . 7
⊢ 𝐸 ∈ V |
98 | 97 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → 𝐸 ∈ V) |
99 | | ovexd 7248 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))) ∈ V) |
100 | 70, 71, 81, 85, 96, 96, 98, 99 | funcpropd 17407 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐶 Func 𝐸) = (𝐶 Func (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))) |
101 | 100 | breqd 5064 |
. . . 4
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐸)𝐺 ↔ 𝐹(𝐶 Func (𝐷 ↾cat
((Homf ‘𝐷) ↾ ((𝑆 ∩ (Base‘𝐷)) × (𝑆 ∩ (Base‘𝐷))))))𝐺)) |
102 | 69, 101 | bitr4d 285 |
. . 3
⊢ ((𝜑 ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺)) → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺)) |
103 | 102 | ex 416 |
. 2
⊢ (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺 ∨ 𝐹(𝐶 Func 𝐸)𝐺) → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺))) |
104 | 2, 4, 103 | pm5.21ndd 384 |
1
⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺)) |