MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2c Structured version   Visualization version   GIF version

Theorem funcres2c 17889
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
funcres2c.a 𝐴 = (Baseβ€˜πΆ)
funcres2c.e 𝐸 = (𝐷 β†Ύs 𝑆)
funcres2c.d (πœ‘ β†’ 𝐷 ∈ Cat)
funcres2c.r (πœ‘ β†’ 𝑆 ∈ 𝑉)
funcres2c.1 (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)
Assertion
Ref Expression
funcres2c (πœ‘ β†’ (𝐹(𝐢 Func 𝐷)𝐺 ↔ 𝐹(𝐢 Func 𝐸)𝐺))

Proof of Theorem funcres2c
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 865 . . 3 (𝐹(𝐢 Func 𝐷)𝐺 β†’ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺))
21a1i 11 . 2 (πœ‘ β†’ (𝐹(𝐢 Func 𝐷)𝐺 β†’ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)))
3 olc 866 . . 3 (𝐹(𝐢 Func 𝐸)𝐺 β†’ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺))
43a1i 11 . 2 (πœ‘ β†’ (𝐹(𝐢 Func 𝐸)𝐺 β†’ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)))
5 funcres2c.a . . . . 5 𝐴 = (Baseβ€˜πΆ)
6 eqid 2725 . . . . 5 (Hom β€˜πΆ) = (Hom β€˜πΆ)
7 eqid 2725 . . . . . . 7 (Baseβ€˜π·) = (Baseβ€˜π·)
8 eqid 2725 . . . . . . 7 (Homf β€˜π·) = (Homf β€˜π·)
9 funcres2c.d . . . . . . 7 (πœ‘ β†’ 𝐷 ∈ Cat)
10 inss2 4229 . . . . . . . 8 (𝑆 ∩ (Baseβ€˜π·)) βŠ† (Baseβ€˜π·)
1110a1i 11 . . . . . . 7 (πœ‘ β†’ (𝑆 ∩ (Baseβ€˜π·)) βŠ† (Baseβ€˜π·))
127, 8, 9, 11fullsubc 17835 . . . . . 6 (πœ‘ β†’ ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))) ∈ (Subcatβ€˜π·))
1312adantr 479 . . . . 5 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))) ∈ (Subcatβ€˜π·))
148, 7homffn 17672 . . . . . . 7 (Homf β€˜π·) Fn ((Baseβ€˜π·) Γ— (Baseβ€˜π·))
15 xpss12 5692 . . . . . . . 8 (((𝑆 ∩ (Baseβ€˜π·)) βŠ† (Baseβ€˜π·) ∧ (𝑆 ∩ (Baseβ€˜π·)) βŠ† (Baseβ€˜π·)) β†’ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))) βŠ† ((Baseβ€˜π·) Γ— (Baseβ€˜π·)))
1610, 10, 15mp2an 690 . . . . . . 7 ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))) βŠ† ((Baseβ€˜π·) Γ— (Baseβ€˜π·))
17 fnssres 6677 . . . . . . 7 (((Homf β€˜π·) Fn ((Baseβ€˜π·) Γ— (Baseβ€˜π·)) ∧ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))) βŠ† ((Baseβ€˜π·) Γ— (Baseβ€˜π·))) β†’ ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))) Fn ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))
1814, 16, 17mp2an 690 . . . . . 6 ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))) Fn ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))
1918a1i 11 . . . . 5 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))) Fn ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))
20 funcres2c.1 . . . . . . . 8 (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)
2120adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ 𝐹:π΄βŸΆπ‘†)
2221ffnd 6722 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ 𝐹 Fn 𝐴)
2321frnd 6729 . . . . . . 7 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ ran 𝐹 βŠ† 𝑆)
24 simpr 483 . . . . . . . . . 10 ((πœ‘ ∧ 𝐹(𝐢 Func 𝐷)𝐺) β†’ 𝐹(𝐢 Func 𝐷)𝐺)
255, 7, 24funcf1 17851 . . . . . . . . 9 ((πœ‘ ∧ 𝐹(𝐢 Func 𝐷)𝐺) β†’ 𝐹:𝐴⟢(Baseβ€˜π·))
2625frnd 6729 . . . . . . . 8 ((πœ‘ ∧ 𝐹(𝐢 Func 𝐷)𝐺) β†’ ran 𝐹 βŠ† (Baseβ€˜π·))
27 eqid 2725 . . . . . . . . . . 11 (Baseβ€˜πΈ) = (Baseβ€˜πΈ)
28 simpr 483 . . . . . . . . . . 11 ((πœ‘ ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ 𝐹(𝐢 Func 𝐸)𝐺)
295, 27, 28funcf1 17851 . . . . . . . . . 10 ((πœ‘ ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ 𝐹:𝐴⟢(Baseβ€˜πΈ))
3029frnd 6729 . . . . . . . . 9 ((πœ‘ ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ ran 𝐹 βŠ† (Baseβ€˜πΈ))
31 funcres2c.e . . . . . . . . . 10 𝐸 = (𝐷 β†Ύs 𝑆)
3231, 7ressbasss 17218 . . . . . . . . 9 (Baseβ€˜πΈ) βŠ† (Baseβ€˜π·)
3330, 32sstrdi 3990 . . . . . . . 8 ((πœ‘ ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ ran 𝐹 βŠ† (Baseβ€˜π·))
3426, 33jaodan 955 . . . . . . 7 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ ran 𝐹 βŠ† (Baseβ€˜π·))
3523, 34ssind 4232 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ ran 𝐹 βŠ† (𝑆 ∩ (Baseβ€˜π·)))
36 df-f 6551 . . . . . 6 (𝐹:𝐴⟢(𝑆 ∩ (Baseβ€˜π·)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† (𝑆 ∩ (Baseβ€˜π·))))
3722, 35, 36sylanbrc 581 . . . . 5 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ 𝐹:𝐴⟢(𝑆 ∩ (Baseβ€˜π·)))
38 eqid 2725 . . . . . . . . 9 (Hom β€˜π·) = (Hom β€˜π·)
39 simpr 483 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐷)𝐺) β†’ 𝐹(𝐢 Func 𝐷)𝐺)
40 simplrl 775 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐷)𝐺) β†’ π‘₯ ∈ 𝐴)
41 simplrr 776 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐷)𝐺) β†’ 𝑦 ∈ 𝐴)
425, 6, 38, 39, 40, 41funcf2 17853 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐷)𝐺) β†’ (π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦)))
43 eqid 2725 . . . . . . . . . 10 (Hom β€˜πΈ) = (Hom β€˜πΈ)
44 simpr 483 . . . . . . . . . 10 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ 𝐹(𝐢 Func 𝐸)𝐺)
45 simplrl 775 . . . . . . . . . 10 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ π‘₯ ∈ 𝐴)
46 simplrr 776 . . . . . . . . . 10 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ 𝑦 ∈ 𝐴)
475, 6, 43, 44, 45, 46funcf2 17853 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ (π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)(Hom β€˜πΈ)(πΉβ€˜π‘¦)))
48 funcres2c.r . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑆 ∈ 𝑉)
4931, 38resshom 17399 . . . . . . . . . . . . 13 (𝑆 ∈ 𝑉 β†’ (Hom β€˜π·) = (Hom β€˜πΈ))
5048, 49syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (Hom β€˜π·) = (Hom β€˜πΈ))
5150ad2antrr 724 . . . . . . . . . . 11 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ (Hom β€˜π·) = (Hom β€˜πΈ))
5251oveqd 7434 . . . . . . . . . 10 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ ((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦)) = ((πΉβ€˜π‘₯)(Hom β€˜πΈ)(πΉβ€˜π‘¦)))
5352feq3d 6708 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ ((π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦)) ↔ (π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)(Hom β€˜πΈ)(πΉβ€˜π‘¦))))
5447, 53mpbird 256 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝐹(𝐢 Func 𝐸)𝐺) β†’ (π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦)))
5542, 54jaodan 955 . . . . . . 7 (((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦)))
5655an32s 650 . . . . . 6 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦)))
5737adantr 479 . . . . . . . . . 10 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ 𝐹:𝐴⟢(𝑆 ∩ (Baseβ€˜π·)))
58 simprl 769 . . . . . . . . . 10 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ π‘₯ ∈ 𝐴)
5957, 58ffvelcdmd 7092 . . . . . . . . 9 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (πΉβ€˜π‘₯) ∈ (𝑆 ∩ (Baseβ€˜π·)))
60 simprr 771 . . . . . . . . . 10 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ 𝑦 ∈ 𝐴)
6157, 60ffvelcdmd 7092 . . . . . . . . 9 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (πΉβ€˜π‘¦) ∈ (𝑆 ∩ (Baseβ€˜π·)))
6259, 61ovresd 7586 . . . . . . . 8 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ ((πΉβ€˜π‘₯)((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))(πΉβ€˜π‘¦)) = ((πΉβ€˜π‘₯)(Homf β€˜π·)(πΉβ€˜π‘¦)))
6359elin2d 4198 . . . . . . . . 9 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (πΉβ€˜π‘₯) ∈ (Baseβ€˜π·))
6461elin2d 4198 . . . . . . . . 9 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (πΉβ€˜π‘¦) ∈ (Baseβ€˜π·))
658, 7, 38, 63, 64homfval 17671 . . . . . . . 8 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ ((πΉβ€˜π‘₯)(Homf β€˜π·)(πΉβ€˜π‘¦)) = ((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦)))
6662, 65eqtrd 2765 . . . . . . 7 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ ((πΉβ€˜π‘₯)((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))(πΉβ€˜π‘¦)) = ((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦)))
6766feq3d 6708 . . . . . 6 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ ((π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))(πΉβ€˜π‘¦)) ↔ (π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)(Hom β€˜π·)(πΉβ€˜π‘¦))))
6856, 67mpbird 256 . . . . 5 (((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯𝐺𝑦):(π‘₯(Hom β€˜πΆ)𝑦)⟢((πΉβ€˜π‘₯)((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))(πΉβ€˜π‘¦)))
695, 6, 13, 19, 37, 68funcres2b 17882 . . . 4 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (𝐹(𝐢 Func 𝐷)𝐺 ↔ 𝐹(𝐢 Func (𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))))𝐺))
70 eqidd 2726 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (Homf β€˜πΆ) = (Homf β€˜πΆ))
71 eqidd 2726 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (compfβ€˜πΆ) = (compfβ€˜πΆ))
727ressinbas 17225 . . . . . . . . . . 11 (𝑆 ∈ 𝑉 β†’ (𝐷 β†Ύs 𝑆) = (𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·))))
7348, 72syl 17 . . . . . . . . . 10 (πœ‘ β†’ (𝐷 β†Ύs 𝑆) = (𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·))))
7431, 73eqtrid 2777 . . . . . . . . 9 (πœ‘ β†’ 𝐸 = (𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·))))
7574fveq2d 6898 . . . . . . . 8 (πœ‘ β†’ (Homf β€˜πΈ) = (Homf β€˜(𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·)))))
76 eqid 2725 . . . . . . . . . 10 (𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·))) = (𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·)))
77 eqid 2725 . . . . . . . . . 10 (𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))) = (𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))
787, 8, 9, 11, 76, 77fullresc 17836 . . . . . . . . 9 (πœ‘ β†’ ((Homf β€˜(𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·)))) = (Homf β€˜(𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))) ∧ (compfβ€˜(𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·)))) = (compfβ€˜(𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))))))
7978simpld 493 . . . . . . . 8 (πœ‘ β†’ (Homf β€˜(𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·)))) = (Homf β€˜(𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))))
8075, 79eqtrd 2765 . . . . . . 7 (πœ‘ β†’ (Homf β€˜πΈ) = (Homf β€˜(𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))))
8180adantr 479 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (Homf β€˜πΈ) = (Homf β€˜(𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))))
8274fveq2d 6898 . . . . . . . 8 (πœ‘ β†’ (compfβ€˜πΈ) = (compfβ€˜(𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·)))))
8378simprd 494 . . . . . . . 8 (πœ‘ β†’ (compfβ€˜(𝐷 β†Ύs (𝑆 ∩ (Baseβ€˜π·)))) = (compfβ€˜(𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))))
8482, 83eqtrd 2765 . . . . . . 7 (πœ‘ β†’ (compfβ€˜πΈ) = (compfβ€˜(𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))))
8584adantr 479 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (compfβ€˜πΈ) = (compfβ€˜(𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))))
86 df-br 5149 . . . . . . . . . . 11 (𝐹(𝐢 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐢 Func 𝐷))
87 funcrcl 17848 . . . . . . . . . . 11 (⟨𝐹, 𝐺⟩ ∈ (𝐢 Func 𝐷) β†’ (𝐢 ∈ Cat ∧ 𝐷 ∈ Cat))
8886, 87sylbi 216 . . . . . . . . . 10 (𝐹(𝐢 Func 𝐷)𝐺 β†’ (𝐢 ∈ Cat ∧ 𝐷 ∈ Cat))
8988simpld 493 . . . . . . . . 9 (𝐹(𝐢 Func 𝐷)𝐺 β†’ 𝐢 ∈ Cat)
90 df-br 5149 . . . . . . . . . . 11 (𝐹(𝐢 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐢 Func 𝐸))
91 funcrcl 17848 . . . . . . . . . . 11 (⟨𝐹, 𝐺⟩ ∈ (𝐢 Func 𝐸) β†’ (𝐢 ∈ Cat ∧ 𝐸 ∈ Cat))
9290, 91sylbi 216 . . . . . . . . . 10 (𝐹(𝐢 Func 𝐸)𝐺 β†’ (𝐢 ∈ Cat ∧ 𝐸 ∈ Cat))
9392simpld 493 . . . . . . . . 9 (𝐹(𝐢 Func 𝐸)𝐺 β†’ 𝐢 ∈ Cat)
9489, 93jaoi 855 . . . . . . . 8 ((𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺) β†’ 𝐢 ∈ Cat)
9594elexd 3485 . . . . . . 7 ((𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺) β†’ 𝐢 ∈ V)
9695adantl 480 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ 𝐢 ∈ V)
9731ovexi 7451 . . . . . . 7 𝐸 ∈ V
9897a1i 11 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ 𝐸 ∈ V)
99 ovexd 7452 . . . . . 6 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))) ∈ V)
10070, 71, 81, 85, 96, 96, 98, 99funcpropd 17888 . . . . 5 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (𝐢 Func 𝐸) = (𝐢 Func (𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·)))))))
101100breqd 5159 . . . 4 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (𝐹(𝐢 Func 𝐸)𝐺 ↔ 𝐹(𝐢 Func (𝐷 β†Ύcat ((Homf β€˜π·) β†Ύ ((𝑆 ∩ (Baseβ€˜π·)) Γ— (𝑆 ∩ (Baseβ€˜π·))))))𝐺))
10269, 101bitr4d 281 . . 3 ((πœ‘ ∧ (𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺)) β†’ (𝐹(𝐢 Func 𝐷)𝐺 ↔ 𝐹(𝐢 Func 𝐸)𝐺))
103102ex 411 . 2 (πœ‘ β†’ ((𝐹(𝐢 Func 𝐷)𝐺 ∨ 𝐹(𝐢 Func 𝐸)𝐺) β†’ (𝐹(𝐢 Func 𝐷)𝐺 ↔ 𝐹(𝐢 Func 𝐸)𝐺)))
1042, 4, 103pm5.21ndd 378 1 (πœ‘ β†’ (𝐹(𝐢 Func 𝐷)𝐺 ↔ 𝐹(𝐢 Func 𝐸)𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845   = wceq 1533   ∈ wcel 2098  Vcvv 3463   ∩ cin 3944   βŠ† wss 3945  βŸ¨cop 4635   class class class wbr 5148   Γ— cxp 5675  ran crn 5678   β†Ύ cres 5679   Fn wfn 6542  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417  Basecbs 17179   β†Ύs cress 17208  Hom chom 17243  Catccat 17643  Homf chomf 17645  compfccomf 17646   β†Ύcat cresc 17790  Subcatcsubc 17791   Func cfunc 17839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-hom 17256  df-cco 17257  df-cat 17647  df-cid 17648  df-homf 17649  df-comf 17650  df-ssc 17792  df-resc 17793  df-subc 17794  df-func 17843
This theorem is referenced by:  fthres2c  17919  fullres2c  17927
  Copyright terms: Public domain W3C validator