MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppfi Structured version   Visualization version   GIF version

Theorem ressuppfi 9418
Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.)
Hypotheses
Ref Expression
ressuppfi.b (𝜑 → (dom 𝐹𝐵) ∈ Fin)
ressuppfi.f (𝜑𝐹𝑊)
ressuppfi.g (𝜑𝐺 = (𝐹𝐵))
ressuppfi.s (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
ressuppfi.z (𝜑𝑍𝑉)
Assertion
Ref Expression
ressuppfi (𝜑 → (𝐹 supp 𝑍) ∈ Fin)

Proof of Theorem ressuppfi
StepHypRef Expression
1 ressuppfi.g . . . . . 6 (𝜑𝐺 = (𝐹𝐵))
21eqcomd 2731 . . . . 5 (𝜑 → (𝐹𝐵) = 𝐺)
32oveq1d 7431 . . . 4 (𝜑 → ((𝐹𝐵) supp 𝑍) = (𝐺 supp 𝑍))
4 ressuppfi.s . . . 4 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
53, 4eqeltrd 2825 . . 3 (𝜑 → ((𝐹𝐵) supp 𝑍) ∈ Fin)
6 ressuppfi.b . . 3 (𝜑 → (dom 𝐹𝐵) ∈ Fin)
7 unfi 9195 . . 3 ((((𝐹𝐵) supp 𝑍) ∈ Fin ∧ (dom 𝐹𝐵) ∈ Fin) → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) ∈ Fin)
85, 6, 7syl2anc 582 . 2 (𝜑 → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) ∈ Fin)
9 ressuppfi.f . . 3 (𝜑𝐹𝑊)
10 ressuppfi.z . . 3 (𝜑𝑍𝑉)
11 ressuppssdif 8188 . . 3 ((𝐹𝑊𝑍𝑉) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
129, 10, 11syl2anc 582 . 2 (𝜑 → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
138, 12ssfid 9290 1 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cdif 3936  cun 3937  wss 3939  dom cdm 5672  cres 5674  (class class class)co 7416   supp csupp 8163  Fincfn 8962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-supp 8164  df-1o 8485  df-en 8963  df-fin 8966
This theorem is referenced by:  resfsupp  9419
  Copyright terms: Public domain W3C validator