Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressuppfi | Structured version Visualization version GIF version |
Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.) |
Ref | Expression |
---|---|
ressuppfi.b | ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) |
ressuppfi.f | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
ressuppfi.g | ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) |
ressuppfi.s | ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) |
ressuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
ressuppfi | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressuppfi.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) | |
2 | 1 | eqcomd 2745 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝐵) = 𝐺) |
3 | 2 | oveq1d 7283 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) supp 𝑍) = (𝐺 supp 𝑍)) |
4 | ressuppfi.s | . . . 4 ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) | |
5 | 3, 4 | eqeltrd 2840 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) supp 𝑍) ∈ Fin) |
6 | ressuppfi.b | . . 3 ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) | |
7 | unfi 8920 | . . 3 ⊢ ((((𝐹 ↾ 𝐵) supp 𝑍) ∈ Fin ∧ (dom 𝐹 ∖ 𝐵) ∈ Fin) → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) ∈ Fin) | |
8 | 5, 6, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) ∈ Fin) |
9 | ressuppfi.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
10 | ressuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
11 | ressuppssdif 7985 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) | |
12 | 9, 10, 11 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) |
13 | 8, 12 | ssfid 9003 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 ∪ cun 3889 ⊆ wss 3891 dom cdm 5588 ↾ cres 5590 (class class class)co 7268 supp csupp 7961 Fincfn 8707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-supp 7962 df-1o 8281 df-en 8708 df-fin 8711 |
This theorem is referenced by: resfsupp 9116 |
Copyright terms: Public domain | W3C validator |