Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressuppfi | Structured version Visualization version GIF version |
Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.) |
Ref | Expression |
---|---|
ressuppfi.b | ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) |
ressuppfi.f | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
ressuppfi.g | ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) |
ressuppfi.s | ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) |
ressuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
ressuppfi | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressuppfi.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) | |
2 | 1 | eqcomd 2743 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝐵) = 𝐺) |
3 | 2 | oveq1d 7228 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) supp 𝑍) = (𝐺 supp 𝑍)) |
4 | ressuppfi.s | . . . 4 ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) | |
5 | 3, 4 | eqeltrd 2838 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) supp 𝑍) ∈ Fin) |
6 | ressuppfi.b | . . 3 ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) | |
7 | unfi 8850 | . . 3 ⊢ ((((𝐹 ↾ 𝐵) supp 𝑍) ∈ Fin ∧ (dom 𝐹 ∖ 𝐵) ∈ Fin) → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) ∈ Fin) | |
8 | 5, 6, 7 | syl2anc 587 | . 2 ⊢ (𝜑 → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) ∈ Fin) |
9 | ressuppfi.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
10 | ressuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
11 | ressuppssdif 7927 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) | |
12 | 9, 10, 11 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) |
13 | 8, 12 | ssfid 8898 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ∪ cun 3864 ⊆ wss 3866 dom cdm 5551 ↾ cres 5553 (class class class)co 7213 supp csupp 7903 Fincfn 8626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-supp 7904 df-1o 8202 df-en 8627 df-fin 8630 |
This theorem is referenced by: resfsupp 9012 |
Copyright terms: Public domain | W3C validator |