| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressuppfi | Structured version Visualization version GIF version | ||
| Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| ressuppfi.b | ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) |
| ressuppfi.f | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| ressuppfi.g | ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) |
| ressuppfi.s | ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) |
| ressuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ressuppfi | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressuppfi.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) | |
| 2 | 1 | eqcomd 2740 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝐵) = 𝐺) |
| 3 | 2 | oveq1d 7429 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) supp 𝑍) = (𝐺 supp 𝑍)) |
| 4 | ressuppfi.s | . . . 4 ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) | |
| 5 | 3, 4 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) supp 𝑍) ∈ Fin) |
| 6 | ressuppfi.b | . . 3 ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) | |
| 7 | unfi 9194 | . . 3 ⊢ ((((𝐹 ↾ 𝐵) supp 𝑍) ∈ Fin ∧ (dom 𝐹 ∖ 𝐵) ∈ Fin) → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) ∈ Fin) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) ∈ Fin) |
| 9 | ressuppfi.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 10 | ressuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 11 | ressuppssdif 8193 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) | |
| 12 | 9, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) |
| 13 | 8, 12 | ssfid 9284 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∖ cdif 3930 ∪ cun 3931 ⊆ wss 3933 dom cdm 5667 ↾ cres 5669 (class class class)co 7414 supp csupp 8168 Fincfn 8968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-supp 8169 df-1o 8489 df-en 8969 df-fin 8972 |
| This theorem is referenced by: resfsupp 9419 |
| Copyright terms: Public domain | W3C validator |