| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressuppfi | Structured version Visualization version GIF version | ||
| Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| ressuppfi.b | ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) |
| ressuppfi.f | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| ressuppfi.g | ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) |
| ressuppfi.s | ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) |
| ressuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ressuppfi | ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressuppfi.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) | |
| 2 | 1 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝐵) = 𝐺) |
| 3 | 2 | oveq1d 7402 | . . . 4 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) supp 𝑍) = (𝐺 supp 𝑍)) |
| 4 | ressuppfi.s | . . . 4 ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) | |
| 5 | 3, 4 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) supp 𝑍) ∈ Fin) |
| 6 | ressuppfi.b | . . 3 ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) | |
| 7 | unfi 9135 | . . 3 ⊢ ((((𝐹 ↾ 𝐵) supp 𝑍) ∈ Fin ∧ (dom 𝐹 ∖ 𝐵) ∈ Fin) → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) ∈ Fin) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵)) ∈ Fin) |
| 9 | ressuppfi.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 10 | ressuppfi.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 11 | ressuppssdif 8164 | . . 3 ⊢ ((𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) | |
| 12 | 9, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) |
| 13 | 8, 12 | ssfid 9212 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∪ cun 3912 ⊆ wss 3914 dom cdm 5638 ↾ cres 5640 (class class class)co 7387 supp csupp 8139 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-supp 8140 df-1o 8434 df-en 8919 df-fin 8922 |
| This theorem is referenced by: resfsupp 9347 |
| Copyright terms: Public domain | W3C validator |