MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppfi Structured version   Visualization version   GIF version

Theorem ressuppfi 9412
Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.)
Hypotheses
Ref Expression
ressuppfi.b (𝜑 → (dom 𝐹𝐵) ∈ Fin)
ressuppfi.f (𝜑𝐹𝑊)
ressuppfi.g (𝜑𝐺 = (𝐹𝐵))
ressuppfi.s (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
ressuppfi.z (𝜑𝑍𝑉)
Assertion
Ref Expression
ressuppfi (𝜑 → (𝐹 supp 𝑍) ∈ Fin)

Proof of Theorem ressuppfi
StepHypRef Expression
1 ressuppfi.g . . . . . 6 (𝜑𝐺 = (𝐹𝐵))
21eqcomd 2742 . . . . 5 (𝜑 → (𝐹𝐵) = 𝐺)
32oveq1d 7425 . . . 4 (𝜑 → ((𝐹𝐵) supp 𝑍) = (𝐺 supp 𝑍))
4 ressuppfi.s . . . 4 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
53, 4eqeltrd 2835 . . 3 (𝜑 → ((𝐹𝐵) supp 𝑍) ∈ Fin)
6 ressuppfi.b . . 3 (𝜑 → (dom 𝐹𝐵) ∈ Fin)
7 unfi 9190 . . 3 ((((𝐹𝐵) supp 𝑍) ∈ Fin ∧ (dom 𝐹𝐵) ∈ Fin) → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) ∈ Fin)
85, 6, 7syl2anc 584 . 2 (𝜑 → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) ∈ Fin)
9 ressuppfi.f . . 3 (𝜑𝐹𝑊)
10 ressuppfi.z . . 3 (𝜑𝑍𝑉)
11 ressuppssdif 8189 . . 3 ((𝐹𝑊𝑍𝑉) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
129, 10, 11syl2anc 584 . 2 (𝜑 → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
138, 12ssfid 9278 1 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3928  cun 3929  wss 3931  dom cdm 5659  cres 5661  (class class class)co 7410   supp csupp 8164  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-supp 8165  df-1o 8485  df-en 8965  df-fin 8968
This theorem is referenced by:  resfsupp  9413
  Copyright terms: Public domain W3C validator