| Step | Hyp | Ref
| Expression |
| 1 | | ressxr 11288 |
. . . 4
⊢ ℝ
⊆ ℝ* |
| 2 | | xrecex 32849 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1) |
| 3 | 2 | 3adant1 1130 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∃𝑦 ∈ ℝ
(𝐵 ·e
𝑦) = 1) |
| 4 | | ssrexv 4035 |
. . . 4
⊢ (ℝ
⊆ ℝ* → (∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1 → ∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1)) |
| 5 | 1, 3, 4 | mpsyl 68 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∃𝑦 ∈
ℝ* (𝐵
·e 𝑦) =
1) |
| 6 | | simprl 770 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝑦 ∈ ℝ*) |
| 7 | | simpll 766 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐴 ∈
ℝ*) |
| 8 | 6, 7 | xmulcld 13327 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝑦 ·e 𝐴) ∈
ℝ*) |
| 9 | | oveq1 7421 |
. . . . . . . 8
⊢ ((𝐵 ·e 𝑦) = 1 → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴)) |
| 10 | 9 | ad2antll 729 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴)) |
| 11 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈ ℝ) |
| 12 | 11 | rexrd 11294 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈
ℝ*) |
| 13 | | xmulass 13312 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ 𝐴
∈ ℝ*) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴))) |
| 14 | 12, 6, 7, 13 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴))) |
| 15 | | xmullid 13305 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (1 ·e 𝐴) = 𝐴) |
| 16 | 7, 15 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (1 ·e 𝐴) = 𝐴) |
| 17 | 10, 14, 16 | 3eqtr3d 2777 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴) |
| 18 | | oveq2 7422 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ·e 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e (𝑦 ·e 𝐴))) |
| 19 | 18 | eqeq1d 2736 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ·e 𝐴) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴)) |
| 20 | 19 | rspcev 3606 |
. . . . . 6
⊢ (((𝑦 ·e 𝐴) ∈ ℝ*
∧ (𝐵
·e (𝑦
·e 𝐴)) =
𝐴) → ∃𝑥 ∈ ℝ*
(𝐵 ·e
𝑥) = 𝐴) |
| 21 | 8, 17, 20 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) |
| 22 | 21 | rexlimdvaa 3143 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (∃𝑦 ∈
ℝ* (𝐵
·e 𝑦) = 1
→ ∃𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴)) |
| 23 | 22 | 3adant3 1132 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(∃𝑦 ∈
ℝ* (𝐵
·e 𝑦) = 1
→ ∃𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴)) |
| 24 | 5, 23 | mpd 15 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∃𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴) |
| 25 | | eqtr3 2756 |
. . . . . . 7
⊢ (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦)) |
| 26 | | simp1 1136 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑥 ∈ ℝ*) |
| 27 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑦 ∈ ℝ*) |
| 28 | | simp3l 1201 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ) |
| 29 | | simp3r 1202 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) |
| 30 | 26, 27, 28, 29 | xmulcand 32850 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐵 ·e 𝑥) = (𝐵 ·e 𝑦) ↔ 𝑥 = 𝑦)) |
| 31 | 25, 30 | imbitrid 244 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)) |
| 32 | 31 | 3expa 1118 |
. . . . 5
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)) |
| 33 | 32 | expcom 413 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))) |
| 34 | 33 | 3adant1 1130 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))) |
| 35 | 34 | ralrimivv 3187 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)) |
| 36 | | oveq2 7422 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦)) |
| 37 | 36 | eqeq1d 2736 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑦) = 𝐴)) |
| 38 | 37 | reu4 3721 |
. 2
⊢
(∃!𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴 ↔ (∃𝑥 ∈ ℝ*
(𝐵 ·e
𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ*
(((𝐵 ·e
𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))) |
| 39 | 24, 35, 38 | sylanbrc 583 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∃!𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴) |