Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xreceu Structured version   Visualization version   GIF version

Theorem xreceu 32851
Description: Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 17-Dec-2016.)
Assertion
Ref Expression
xreceu ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xreceu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressxr 11288 . . . 4 ℝ ⊆ ℝ*
2 xrecex 32849 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1)
323adant1 1130 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1)
4 ssrexv 4035 . . . 4 (ℝ ⊆ ℝ* → (∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1 → ∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1))
51, 3, 4mpsyl 68 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1)
6 simprl 770 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝑦 ∈ ℝ*)
7 simpll 766 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐴 ∈ ℝ*)
86, 7xmulcld 13327 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝑦 ·e 𝐴) ∈ ℝ*)
9 oveq1 7421 . . . . . . . 8 ((𝐵 ·e 𝑦) = 1 → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴))
109ad2antll 729 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴))
11 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈ ℝ)
1211rexrd 11294 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈ ℝ*)
13 xmulass 13312 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑦 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴)))
1412, 6, 7, 13syl3anc 1372 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴)))
15 xmullid 13305 . . . . . . . 8 (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴)
167, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (1 ·e 𝐴) = 𝐴)
1710, 14, 163eqtr3d 2777 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴)
18 oveq2 7422 . . . . . . . 8 (𝑥 = (𝑦 ·e 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e (𝑦 ·e 𝐴)))
1918eqeq1d 2736 . . . . . . 7 (𝑥 = (𝑦 ·e 𝐴) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴))
2019rspcev 3606 . . . . . 6 (((𝑦 ·e 𝐴) ∈ ℝ* ∧ (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
218, 17, 20syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
2221rexlimdvaa 3143 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1 → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
23223adant3 1132 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1 → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
245, 23mpd 15 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
25 eqtr3 2756 . . . . . . 7 (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦))
26 simp1 1136 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑥 ∈ ℝ*)
27 simp2 1137 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑦 ∈ ℝ*)
28 simp3l 1201 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
29 simp3r 1202 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
3026, 27, 28, 29xmulcand 32850 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐵 ·e 𝑥) = (𝐵 ·e 𝑦) ↔ 𝑥 = 𝑦))
3125, 30imbitrid 244 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
32313expa 1118 . . . . 5 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
3332expcom 413 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
34333adant1 1130 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
3534ralrimivv 3187 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
36 oveq2 7422 . . . 4 (𝑥 = 𝑦 → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦))
3736eqeq1d 2736 . . 3 (𝑥 = 𝑦 → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑦) = 𝐴))
3837reu4 3721 . 2 (∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
3924, 35, 38sylanbrc 583 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  ∃!wreu 3362  wss 3933  (class class class)co 7414  cr 11137  0cc0 11138  1c1 11139  *cxr 11277   ·e cxmu 13136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-xneg 13137  df-xmul 13139
This theorem is referenced by:  xdivcld  32852  xdivmul  32854  rexdiv  32855  xrmulc1cn  33870
  Copyright terms: Public domain W3C validator