Step | Hyp | Ref
| Expression |
1 | | ressxr 10950 |
. . . 4
⊢ ℝ
⊆ ℝ* |
2 | | xrecex 31096 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1) |
3 | 2 | 3adant1 1128 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∃𝑦 ∈ ℝ
(𝐵 ·e
𝑦) = 1) |
4 | | ssrexv 3984 |
. . . 4
⊢ (ℝ
⊆ ℝ* → (∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1 → ∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1)) |
5 | 1, 3, 4 | mpsyl 68 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∃𝑦 ∈
ℝ* (𝐵
·e 𝑦) =
1) |
6 | | simprl 767 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝑦 ∈ ℝ*) |
7 | | simpll 763 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐴 ∈
ℝ*) |
8 | 6, 7 | xmulcld 12965 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝑦 ·e 𝐴) ∈
ℝ*) |
9 | | oveq1 7262 |
. . . . . . . 8
⊢ ((𝐵 ·e 𝑦) = 1 → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴)) |
10 | 9 | ad2antll 725 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴)) |
11 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈ ℝ) |
12 | 11 | rexrd 10956 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈
ℝ*) |
13 | | xmulass 12950 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ 𝐴
∈ ℝ*) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴))) |
14 | 12, 6, 7, 13 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴))) |
15 | | xmulid2 12943 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (1 ·e 𝐴) = 𝐴) |
16 | 7, 15 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (1 ·e 𝐴) = 𝐴) |
17 | 10, 14, 16 | 3eqtr3d 2786 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴) |
18 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ·e 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e (𝑦 ·e 𝐴))) |
19 | 18 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ·e 𝐴) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴)) |
20 | 19 | rspcev 3552 |
. . . . . 6
⊢ (((𝑦 ·e 𝐴) ∈ ℝ*
∧ (𝐵
·e (𝑦
·e 𝐴)) =
𝐴) → ∃𝑥 ∈ ℝ*
(𝐵 ·e
𝑥) = 𝐴) |
21 | 8, 17, 20 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
∧ (𝑦 ∈
ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) |
22 | 21 | rexlimdvaa 3213 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (∃𝑦 ∈
ℝ* (𝐵
·e 𝑦) = 1
→ ∃𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴)) |
23 | 22 | 3adant3 1130 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(∃𝑦 ∈
ℝ* (𝐵
·e 𝑦) = 1
→ ∃𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴)) |
24 | 5, 23 | mpd 15 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∃𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴) |
25 | | eqtr3 2764 |
. . . . . . 7
⊢ (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦)) |
26 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑥 ∈ ℝ*) |
27 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑦 ∈ ℝ*) |
28 | | simp3l 1199 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ) |
29 | | simp3r 1200 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) |
30 | 26, 27, 28, 29 | xmulcand 31097 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐵 ·e 𝑥) = (𝐵 ·e 𝑦) ↔ 𝑥 = 𝑦)) |
31 | 25, 30 | syl5ib 243 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)) |
32 | 31 | 3expa 1116 |
. . . . 5
⊢ (((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)) |
33 | 32 | expcom 413 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))) |
34 | 33 | 3adant1 1128 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
((𝑥 ∈
ℝ* ∧ 𝑦
∈ ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))) |
35 | 34 | ralrimivv 3113 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∀𝑥 ∈
ℝ* ∀𝑦 ∈ ℝ* (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)) |
36 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦)) |
37 | 36 | eqeq1d 2740 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑦) = 𝐴)) |
38 | 37 | reu4 3661 |
. 2
⊢
(∃!𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴 ↔ (∃𝑥 ∈ ℝ*
(𝐵 ·e
𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ*
(((𝐵 ·e
𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))) |
39 | 24, 35, 38 | sylanbrc 582 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
∃!𝑥 ∈
ℝ* (𝐵
·e 𝑥) =
𝐴) |