MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  receu Structured version   Visualization version   GIF version

Theorem receu 11887
Description: Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
receu ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem receu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recex 11874 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
213adant1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
3 simprl 770 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
4 simpll 766 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
53, 4mulcld 11260 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
6 oveq1 7417 . . . . . . . 8 ((𝐵 · 𝑦) = 1 → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
76ad2antll 729 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
8 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
98, 3, 4mulassd 11263 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (𝐵 · (𝑦 · 𝐴)))
104mullidd 11258 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (1 · 𝐴) = 𝐴)
117, 9, 103eqtr3d 2779 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · (𝑦 · 𝐴)) = 𝐴)
12 oveq2 7418 . . . . . . . 8 (𝑥 = (𝑦 · 𝐴) → (𝐵 · 𝑥) = (𝐵 · (𝑦 · 𝐴)))
1312eqeq1d 2738 . . . . . . 7 (𝑥 = (𝑦 · 𝐴) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝑦 · 𝐴)) = 𝐴))
1413rspcev 3606 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ (𝐵 · (𝑦 · 𝐴)) = 𝐴) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
155, 11, 14syl2anc 584 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
1615rexlimdvaa 3143 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
17163adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
182, 17mpd 15 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
19 eqtr3 2758 . . . . . . 7 (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → (𝐵 · 𝑥) = (𝐵 · 𝑦))
20 mulcan 11879 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐵 · 𝑥) = (𝐵 · 𝑦) ↔ 𝑥 = 𝑦))
2119, 20imbitrid 244 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
22213expa 1118 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
2322expcom 413 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
24233adant1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2524ralrimivv 3186 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
26 oveq2 7418 . . . 4 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
2726eqeq1d 2738 . . 3 (𝑥 = 𝑦 → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑦) = 𝐴))
2827reu4 3719 . 2 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2918, 25, 28sylanbrc 583 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  ∃!wreu 3362  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   · cmul 11139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474
This theorem is referenced by:  divmul  11904  divcl  11907  rexdiv  32905
  Copyright terms: Public domain W3C validator