MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  receu Structured version   Visualization version   GIF version

Theorem receu 11713
Description: Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
receu ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem receu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recex 11700 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
213adant1 1129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
3 simprl 768 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
4 simpll 764 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
53, 4mulcld 11088 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
6 oveq1 7336 . . . . . . . 8 ((𝐵 · 𝑦) = 1 → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
76ad2antll 726 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
8 simplr 766 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
98, 3, 4mulassd 11091 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (𝐵 · (𝑦 · 𝐴)))
104mulid2d 11086 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (1 · 𝐴) = 𝐴)
117, 9, 103eqtr3d 2784 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · (𝑦 · 𝐴)) = 𝐴)
12 oveq2 7337 . . . . . . . 8 (𝑥 = (𝑦 · 𝐴) → (𝐵 · 𝑥) = (𝐵 · (𝑦 · 𝐴)))
1312eqeq1d 2738 . . . . . . 7 (𝑥 = (𝑦 · 𝐴) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝑦 · 𝐴)) = 𝐴))
1413rspcev 3570 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ (𝐵 · (𝑦 · 𝐴)) = 𝐴) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
155, 11, 14syl2anc 584 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
1615rexlimdvaa 3149 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
17163adant3 1131 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
182, 17mpd 15 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
19 eqtr3 2762 . . . . . . 7 (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → (𝐵 · 𝑥) = (𝐵 · 𝑦))
20 mulcan 11705 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐵 · 𝑥) = (𝐵 · 𝑦) ↔ 𝑥 = 𝑦))
2119, 20syl5ib 243 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
22213expa 1117 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
2322expcom 414 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
24233adant1 1129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2524ralrimivv 3191 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
26 oveq2 7337 . . . 4 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
2726eqeq1d 2738 . . 3 (𝑥 = 𝑦 → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑦) = 𝐴))
2827reu4 3676 . 2 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2918, 25, 28sylanbrc 583 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  ∃!wreu 3347  (class class class)co 7329  cc 10962  0cc0 10964  1c1 10965   · cmul 10969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301
This theorem is referenced by:  divmul  11729  divcl  11732  rexdiv  31400
  Copyright terms: Public domain W3C validator