| Step | Hyp | Ref
| Expression |
| 1 | | plydiv.pl |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 2 | | plydiv.tm |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| 3 | | plydiv.rc |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
| 4 | | plydiv.m1 |
. . 3
⊢ (𝜑 → -1 ∈ 𝑆) |
| 5 | | plydiv.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 6 | | plydiv.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| 7 | | plydiv.z |
. . 3
⊢ (𝜑 → 𝐺 ≠
0𝑝) |
| 8 | | plydiv.r |
. . 3
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | plydivex 26339 |
. 2
⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |
| 10 | | simpll 767 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝜑) |
| 11 | 10, 1 | sylan 580 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 12 | 10, 2 | sylan 580 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| 13 | 10, 3 | sylan 580 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
| 14 | 10, 4 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → -1 ∈ 𝑆) |
| 15 | 10, 5 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝐹 ∈ (Poly‘𝑆)) |
| 16 | 10, 6 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ∈ (Poly‘𝑆)) |
| 17 | 10, 7 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ≠
0𝑝) |
| 18 | | eqid 2737 |
. . . . 5
⊢ (𝐹 ∘f −
(𝐺 ∘f
· 𝑝)) = (𝐹 ∘f −
(𝐺 ∘f
· 𝑝)) |
| 19 | | simplrr 778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝑝 ∈ (Poly‘𝑆)) |
| 20 | | simprr 773 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → ((𝐹 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) |
| 21 | | simplrl 777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝑞 ∈ (Poly‘𝑆)) |
| 22 | | simprl 771 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → (𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |
| 23 | 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22 | plydiveu 26340 |
. . . 4
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝑞 = 𝑝) |
| 24 | 23 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) → (((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)) |
| 25 | 24 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)) |
| 26 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → (𝐺 ∘f · 𝑞) = (𝐺 ∘f · 𝑝)) |
| 27 | 26 | oveq2d 7447 |
. . . . . 6
⊢ (𝑞 = 𝑝 → (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) = (𝐹 ∘f − (𝐺 ∘f ·
𝑝))) |
| 28 | 8, 27 | eqtrid 2789 |
. . . . 5
⊢ (𝑞 = 𝑝 → 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑝))) |
| 29 | 28 | eqeq1d 2739 |
. . . 4
⊢ (𝑞 = 𝑝 → (𝑅 = 0𝑝 ↔ (𝐹 ∘f −
(𝐺 ∘f
· 𝑝)) =
0𝑝)) |
| 30 | 28 | fveq2d 6910 |
. . . . 5
⊢ (𝑞 = 𝑝 → (deg‘𝑅) = (deg‘(𝐹 ∘f − (𝐺 ∘f ·
𝑝)))) |
| 31 | 30 | breq1d 5153 |
. . . 4
⊢ (𝑞 = 𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹 ∘f − (𝐺 ∘f ·
𝑝))) < (deg‘𝐺))) |
| 32 | 29, 31 | orbi12d 919 |
. . 3
⊢ (𝑞 = 𝑝 → ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ↔
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) |
| 33 | 32 | reu4 3737 |
. 2
⊢
(∃!𝑞 ∈
(Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ↔
(∃𝑞 ∈
(Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
∀𝑞 ∈
(Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))) |
| 34 | 9, 25, 33 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |