MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivalg Structured version   Visualization version   GIF version

Theorem plydivalg 26359
Description: The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
plydivalg (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦   𝜑,𝑞
Allowed substitution hint:   𝑅(𝑞)

Proof of Theorem plydivalg
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 plydiv.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 plydiv.tm . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
3 plydiv.rc . . 3 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
4 plydiv.m1 . . 3 (𝜑 → -1 ∈ 𝑆)
5 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
6 plydiv.g . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
7 plydiv.z . . 3 (𝜑𝐺 ≠ 0𝑝)
8 plydiv.r . . 3 𝑅 = (𝐹f − (𝐺f · 𝑞))
91, 2, 3, 4, 5, 6, 7, 8plydivex 26357 . 2 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
10 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝜑)
1110, 1sylan 579 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1210, 2sylan 579 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
1310, 3sylan 579 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
1410, 4syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → -1 ∈ 𝑆)
1510, 5syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐹 ∈ (Poly‘𝑆))
1610, 6syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ∈ (Poly‘𝑆))
1710, 7syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ≠ 0𝑝)
18 eqid 2740 . . . . 5 (𝐹f − (𝐺f · 𝑝)) = (𝐹f − (𝐺f · 𝑝))
19 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑝 ∈ (Poly‘𝑆))
20 simprr 772 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))
21 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑞 ∈ (Poly‘𝑆))
22 simprl 770 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
2311, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22plydiveu 26358 . . . 4 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑞 = 𝑝)
2423ex 412 . . 3 ((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) → (((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
2524ralrimivva 3208 . 2 (𝜑 → ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
26 oveq2 7456 . . . . . . 7 (𝑞 = 𝑝 → (𝐺f · 𝑞) = (𝐺f · 𝑝))
2726oveq2d 7464 . . . . . 6 (𝑞 = 𝑝 → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑝)))
288, 27eqtrid 2792 . . . . 5 (𝑞 = 𝑝𝑅 = (𝐹f − (𝐺f · 𝑝)))
2928eqeq1d 2742 . . . 4 (𝑞 = 𝑝 → (𝑅 = 0𝑝 ↔ (𝐹f − (𝐺f · 𝑝)) = 0𝑝))
3028fveq2d 6924 . . . . 5 (𝑞 = 𝑝 → (deg‘𝑅) = (deg‘(𝐹f − (𝐺f · 𝑝))))
3130breq1d 5176 . . . 4 (𝑞 = 𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))
3229, 31orbi12d 917 . . 3 (𝑞 = 𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))))
3332reu4 3753 . 2 (∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ (∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)))
349, 25, 33sylanbrc 582 1 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386   class class class wbr 5166  cfv 6573  (class class class)co 7448  f cof 7712  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  0𝑝c0p 25723  Polycply 26243  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249  df-dgr 26250
This theorem is referenced by:  quotlem  26360
  Copyright terms: Public domain W3C validator