MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivalg Structured version   Visualization version   GIF version

Theorem plydivalg 24880
Description: The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
plydivalg (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦   𝜑,𝑞
Allowed substitution hint:   𝑅(𝑞)

Proof of Theorem plydivalg
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 plydiv.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 plydiv.tm . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
3 plydiv.rc . . 3 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
4 plydiv.m1 . . 3 (𝜑 → -1 ∈ 𝑆)
5 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
6 plydiv.g . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
7 plydiv.z . . 3 (𝜑𝐺 ≠ 0𝑝)
8 plydiv.r . . 3 𝑅 = (𝐹f − (𝐺f · 𝑞))
91, 2, 3, 4, 5, 6, 7, 8plydivex 24878 . 2 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
10 simpll 765 . . . . . 6 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝜑)
1110, 1sylan 582 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1210, 2sylan 582 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
1310, 3sylan 582 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
1410, 4syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → -1 ∈ 𝑆)
1510, 5syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐹 ∈ (Poly‘𝑆))
1610, 6syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ∈ (Poly‘𝑆))
1710, 7syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ≠ 0𝑝)
18 eqid 2819 . . . . 5 (𝐹f − (𝐺f · 𝑝)) = (𝐹f − (𝐺f · 𝑝))
19 simplrr 776 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑝 ∈ (Poly‘𝑆))
20 simprr 771 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))
21 simplrl 775 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑞 ∈ (Poly‘𝑆))
22 simprl 769 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
2311, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22plydiveu 24879 . . . 4 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑞 = 𝑝)
2423ex 415 . . 3 ((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) → (((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
2524ralrimivva 3189 . 2 (𝜑 → ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
26 oveq2 7156 . . . . . . 7 (𝑞 = 𝑝 → (𝐺f · 𝑞) = (𝐺f · 𝑝))
2726oveq2d 7164 . . . . . 6 (𝑞 = 𝑝 → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑝)))
288, 27syl5eq 2866 . . . . 5 (𝑞 = 𝑝𝑅 = (𝐹f − (𝐺f · 𝑝)))
2928eqeq1d 2821 . . . 4 (𝑞 = 𝑝 → (𝑅 = 0𝑝 ↔ (𝐹f − (𝐺f · 𝑝)) = 0𝑝))
3028fveq2d 6667 . . . . 5 (𝑞 = 𝑝 → (deg‘𝑅) = (deg‘(𝐹f − (𝐺f · 𝑝))))
3130breq1d 5067 . . . 4 (𝑞 = 𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))
3229, 31orbi12d 915 . . 3 (𝑞 = 𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))))
3332reu4 3720 . 2 (∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ (∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)))
349, 25, 33sylanbrc 585 1 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1531  wcel 2108  wne 3014  wral 3136  wrex 3137  ∃!wreu 3138   class class class wbr 5057  cfv 6348  (class class class)co 7148  f cof 7399  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cmin 10862  -cneg 10863   / cdiv 11289  0𝑝c0p 24262  Polycply 24766  degcdgr 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24263  df-ply 24770  df-coe 24772  df-dgr 24773
This theorem is referenced by:  quotlem  24881
  Copyright terms: Public domain W3C validator