Step | Hyp | Ref
| Expression |
1 | | plydiv.pl |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
2 | | plydiv.tm |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
3 | | plydiv.rc |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
4 | | plydiv.m1 |
. . 3
⊢ (𝜑 → -1 ∈ 𝑆) |
5 | | plydiv.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
6 | | plydiv.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
7 | | plydiv.z |
. . 3
⊢ (𝜑 → 𝐺 ≠
0𝑝) |
8 | | plydiv.r |
. . 3
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | plydivex 25362 |
. 2
⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |
10 | | simpll 763 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝜑) |
11 | 10, 1 | sylan 579 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
12 | 10, 2 | sylan 579 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
13 | 10, 3 | sylan 579 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
14 | 10, 4 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → -1 ∈ 𝑆) |
15 | 10, 5 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝐹 ∈ (Poly‘𝑆)) |
16 | 10, 6 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ∈ (Poly‘𝑆)) |
17 | 10, 7 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ≠
0𝑝) |
18 | | eqid 2738 |
. . . . 5
⊢ (𝐹 ∘f −
(𝐺 ∘f
· 𝑝)) = (𝐹 ∘f −
(𝐺 ∘f
· 𝑝)) |
19 | | simplrr 774 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝑝 ∈ (Poly‘𝑆)) |
20 | | simprr 769 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → ((𝐹 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) |
21 | | simplrl 773 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝑞 ∈ (Poly‘𝑆)) |
22 | | simprl 767 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → (𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |
23 | 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22 | plydiveu 25363 |
. . . 4
⊢ (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) → 𝑞 = 𝑝) |
24 | 23 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) → (((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)) |
25 | 24 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)) |
26 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → (𝐺 ∘f · 𝑞) = (𝐺 ∘f · 𝑝)) |
27 | 26 | oveq2d 7271 |
. . . . . 6
⊢ (𝑞 = 𝑝 → (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) = (𝐹 ∘f − (𝐺 ∘f ·
𝑝))) |
28 | 8, 27 | syl5eq 2791 |
. . . . 5
⊢ (𝑞 = 𝑝 → 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑝))) |
29 | 28 | eqeq1d 2740 |
. . . 4
⊢ (𝑞 = 𝑝 → (𝑅 = 0𝑝 ↔ (𝐹 ∘f −
(𝐺 ∘f
· 𝑝)) =
0𝑝)) |
30 | 28 | fveq2d 6760 |
. . . . 5
⊢ (𝑞 = 𝑝 → (deg‘𝑅) = (deg‘(𝐹 ∘f − (𝐺 ∘f ·
𝑝)))) |
31 | 30 | breq1d 5080 |
. . . 4
⊢ (𝑞 = 𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹 ∘f − (𝐺 ∘f ·
𝑝))) < (deg‘𝐺))) |
32 | 29, 31 | orbi12d 915 |
. . 3
⊢ (𝑞 = 𝑝 → ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ↔
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) |
33 | 32 | reu4 3661 |
. 2
⊢
(∃!𝑞 ∈
(Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ↔
(∃𝑞 ∈
(Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
∀𝑞 ∈
(Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ∧
((𝐹 ∘f
− (𝐺
∘f · 𝑝)) = 0𝑝 ∨
(deg‘(𝐹
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))) |
34 | 9, 25, 33 | sylanbrc 582 |
1
⊢ (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |