MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivalg Structured version   Visualization version   GIF version

Theorem plydivalg 26207
Description: The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
plydivalg (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦   𝜑,𝑞
Allowed substitution hint:   𝑅(𝑞)

Proof of Theorem plydivalg
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 plydiv.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 plydiv.tm . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
3 plydiv.rc . . 3 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
4 plydiv.m1 . . 3 (𝜑 → -1 ∈ 𝑆)
5 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
6 plydiv.g . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
7 plydiv.z . . 3 (𝜑𝐺 ≠ 0𝑝)
8 plydiv.r . . 3 𝑅 = (𝐹f − (𝐺f · 𝑞))
91, 2, 3, 4, 5, 6, 7, 8plydivex 26205 . 2 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
10 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝜑)
1110, 1sylan 580 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1210, 2sylan 580 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
1310, 3sylan 580 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
1410, 4syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → -1 ∈ 𝑆)
1510, 5syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐹 ∈ (Poly‘𝑆))
1610, 6syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ∈ (Poly‘𝑆))
1710, 7syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ≠ 0𝑝)
18 eqid 2729 . . . . 5 (𝐹f − (𝐺f · 𝑝)) = (𝐹f − (𝐺f · 𝑝))
19 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑝 ∈ (Poly‘𝑆))
20 simprr 772 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))
21 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑞 ∈ (Poly‘𝑆))
22 simprl 770 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
2311, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22plydiveu 26206 . . . 4 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑞 = 𝑝)
2423ex 412 . . 3 ((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) → (((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
2524ralrimivva 3180 . 2 (𝜑 → ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
26 oveq2 7395 . . . . . . 7 (𝑞 = 𝑝 → (𝐺f · 𝑞) = (𝐺f · 𝑝))
2726oveq2d 7403 . . . . . 6 (𝑞 = 𝑝 → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑝)))
288, 27eqtrid 2776 . . . . 5 (𝑞 = 𝑝𝑅 = (𝐹f − (𝐺f · 𝑝)))
2928eqeq1d 2731 . . . 4 (𝑞 = 𝑝 → (𝑅 = 0𝑝 ↔ (𝐹f − (𝐺f · 𝑝)) = 0𝑝))
3028fveq2d 6862 . . . . 5 (𝑞 = 𝑝 → (deg‘𝑅) = (deg‘(𝐹f − (𝐺f · 𝑝))))
3130breq1d 5117 . . . 4 (𝑞 = 𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))
3229, 31orbi12d 918 . . 3 (𝑞 = 𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))))
3332reu4 3702 . 2 (∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ (∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)))
349, 25, 33sylanbrc 583 1 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352   class class class wbr 5107  cfv 6511  (class class class)co 7387  f cof 7651  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405  -cneg 11406   / cdiv 11835  0𝑝c0p 25570  Polycply 26089  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096
This theorem is referenced by:  quotlem  26208
  Copyright terms: Public domain W3C validator