MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivalg Structured version   Visualization version   GIF version

Theorem plydivalg 26214
Description: The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
plydivalg (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦   𝜑,𝑞
Allowed substitution hint:   𝑅(𝑞)

Proof of Theorem plydivalg
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 plydiv.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 plydiv.tm . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
3 plydiv.rc . . 3 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
4 plydiv.m1 . . 3 (𝜑 → -1 ∈ 𝑆)
5 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
6 plydiv.g . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
7 plydiv.z . . 3 (𝜑𝐺 ≠ 0𝑝)
8 plydiv.r . . 3 𝑅 = (𝐹f − (𝐺f · 𝑞))
91, 2, 3, 4, 5, 6, 7, 8plydivex 26212 . 2 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
10 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝜑)
1110, 1sylan 580 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1210, 2sylan 580 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
1310, 3sylan 580 . . . . 5 ((((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
1410, 4syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → -1 ∈ 𝑆)
1510, 5syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐹 ∈ (Poly‘𝑆))
1610, 6syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ∈ (Poly‘𝑆))
1710, 7syl 17 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝐺 ≠ 0𝑝)
18 eqid 2730 . . . . 5 (𝐹f − (𝐺f · 𝑝)) = (𝐹f − (𝐺f · 𝑝))
19 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑝 ∈ (Poly‘𝑆))
20 simprr 772 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))
21 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑞 ∈ (Poly‘𝑆))
22 simprl 770 . . . . 5 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
2311, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22plydiveu 26213 . . . 4 (((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) ∧ ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))) → 𝑞 = 𝑝)
2423ex 412 . . 3 ((𝜑 ∧ (𝑞 ∈ (Poly‘𝑆) ∧ 𝑝 ∈ (Poly‘𝑆))) → (((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
2524ralrimivva 3181 . 2 (𝜑 → ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝))
26 oveq2 7398 . . . . . . 7 (𝑞 = 𝑝 → (𝐺f · 𝑞) = (𝐺f · 𝑝))
2726oveq2d 7406 . . . . . 6 (𝑞 = 𝑝 → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑝)))
288, 27eqtrid 2777 . . . . 5 (𝑞 = 𝑝𝑅 = (𝐹f − (𝐺f · 𝑝)))
2928eqeq1d 2732 . . . 4 (𝑞 = 𝑝 → (𝑅 = 0𝑝 ↔ (𝐹f − (𝐺f · 𝑝)) = 0𝑝))
3028fveq2d 6865 . . . . 5 (𝑞 = 𝑝 → (deg‘𝑅) = (deg‘(𝐹f − (𝐺f · 𝑝))))
3130breq1d 5120 . . . 4 (𝑞 = 𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺)))
3229, 31orbi12d 918 . . 3 (𝑞 = 𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))))
3332reu4 3705 . 2 (∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ (∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ∀𝑞 ∈ (Poly‘𝑆)∀𝑝 ∈ (Poly‘𝑆)(((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ∧ ((𝐹f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑝))) < (deg‘𝐺))) → 𝑞 = 𝑝)))
349, 25, 33sylanbrc 583 1 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  ∃!wreu 3354   class class class wbr 5110  cfv 6514  (class class class)co 7390  f cof 7654  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412  -cneg 11413   / cdiv 11842  0𝑝c0p 25577  Polycply 26096  degcdgr 26099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-coe 26102  df-dgr 26103
This theorem is referenced by:  quotlem  26215
  Copyright terms: Public domain W3C validator