Step | Hyp | Ref
| Expression |
1 | | plydiv.pl |
. . 3
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
2 | | plydiv.tm |
. . 3
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ Β· π¦) β π) |
3 | | plydiv.rc |
. . 3
β’ ((π β§ (π₯ β π β§ π₯ β 0)) β (1 / π₯) β π) |
4 | | plydiv.m1 |
. . 3
β’ (π β -1 β π) |
5 | | plydiv.f |
. . 3
β’ (π β πΉ β (Polyβπ)) |
6 | | plydiv.g |
. . 3
β’ (π β πΊ β (Polyβπ)) |
7 | | plydiv.z |
. . 3
β’ (π β πΊ β
0π) |
8 | | plydiv.r |
. . 3
β’ π
= (πΉ βf β (πΊ βf Β·
π)) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | plydivex 25810 |
. 2
β’ (π β βπ β (Polyβπ)(π
= 0π β¨
(degβπ
) <
(degβπΊ))) |
10 | | simpll 766 |
. . . . . 6
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β π) |
11 | 10, 1 | sylan 581 |
. . . . 5
β’ ((((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
12 | 10, 2 | sylan 581 |
. . . . 5
β’ ((((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β§ (π₯ β π β§ π¦ β π)) β (π₯ Β· π¦) β π) |
13 | 10, 3 | sylan 581 |
. . . . 5
β’ ((((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β§ (π₯ β π β§ π₯ β 0)) β (1 / π₯) β π) |
14 | 10, 4 | syl 17 |
. . . . 5
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β -1 β π) |
15 | 10, 5 | syl 17 |
. . . . 5
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β πΉ β (Polyβπ)) |
16 | 10, 6 | syl 17 |
. . . . 5
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β πΊ β (Polyβπ)) |
17 | 10, 7 | syl 17 |
. . . . 5
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β πΊ β
0π) |
18 | | eqid 2733 |
. . . . 5
β’ (πΉ βf β
(πΊ βf
Β· π)) = (πΉ βf β
(πΊ βf
Β· π)) |
19 | | simplrr 777 |
. . . . 5
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β π β (Polyβπ)) |
20 | | simprr 772 |
. . . . 5
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β ((πΉ βf β (πΊ βf Β·
π)) = 0π
β¨ (degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ))) |
21 | | simplrl 776 |
. . . . 5
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β π β (Polyβπ)) |
22 | | simprl 770 |
. . . . 5
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β (π
= 0π β¨
(degβπ
) <
(degβπΊ))) |
23 | 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 8, 21, 22 | plydiveu 25811 |
. . . 4
β’ (((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β§ ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) β π = π) |
24 | 23 | ex 414 |
. . 3
β’ ((π β§ (π β (Polyβπ) β§ π β (Polyβπ))) β (((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ))) β π = π)) |
25 | 24 | ralrimivva 3201 |
. 2
β’ (π β βπ β (Polyβπ)βπ β (Polyβπ)(((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ))) β π = π)) |
26 | | oveq2 7417 |
. . . . . . 7
β’ (π = π β (πΊ βf Β· π) = (πΊ βf Β· π)) |
27 | 26 | oveq2d 7425 |
. . . . . 6
β’ (π = π β (πΉ βf β (πΊ βf Β·
π)) = (πΉ βf β (πΊ βf Β·
π))) |
28 | 8, 27 | eqtrid 2785 |
. . . . 5
β’ (π = π β π
= (πΉ βf β (πΊ βf Β·
π))) |
29 | 28 | eqeq1d 2735 |
. . . 4
β’ (π = π β (π
= 0π β (πΉ βf β
(πΊ βf
Β· π)) =
0π)) |
30 | 28 | fveq2d 6896 |
. . . . 5
β’ (π = π β (degβπ
) = (degβ(πΉ βf β (πΊ βf Β·
π)))) |
31 | 30 | breq1d 5159 |
. . . 4
β’ (π = π β ((degβπ
) < (degβπΊ) β (degβ(πΉ βf β (πΊ βf Β·
π))) < (degβπΊ))) |
32 | 29, 31 | orbi12d 918 |
. . 3
β’ (π = π β ((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ)))) |
33 | 32 | reu4 3728 |
. 2
β’
(β!π β
(Polyβπ)(π
= 0π β¨
(degβπ
) <
(degβπΊ)) β
(βπ β
(Polyβπ)(π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
βπ β
(Polyβπ)βπ β (Polyβπ)(((π
= 0π β¨
(degβπ
) <
(degβπΊ)) β§
((πΉ βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ(πΉ
βf β (πΊ βf Β· π))) < (degβπΊ))) β π = π))) |
34 | 9, 25, 33 | sylanbrc 584 |
1
β’ (π β β!π β (Polyβπ)(π
= 0π β¨
(degβπ
) <
(degβπΊ))) |