Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfp Structured version   Visualization version   GIF version

Theorem bfp 37784
Description: Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if 𝐹 has two fixed points, then the distance between them is less than 𝐾 times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
bfp (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐾(𝑧)

Proof of Theorem bfp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
2 n0 4376 . . . 4 (𝑋 ≠ ∅ ↔ ∃𝑤 𝑤𝑋)
31, 2sylib 218 . . 3 (𝜑 → ∃𝑤 𝑤𝑋)
4 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
54adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝐷 ∈ (CMet‘𝑋))
61adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝑋 ≠ ∅)
7 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
87adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝐾 ∈ ℝ+)
9 bfp.5 . . . . 5 (𝜑𝐾 < 1)
109adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝐾 < 1)
11 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
1211adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝐹:𝑋𝑋)
13 bfp.7 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
1413adantlr 714 . . . 4 (((𝜑𝑤𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
15 eqid 2740 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
16 simpr 484 . . . 4 ((𝜑𝑤𝑋) → 𝑤𝑋)
17 eqid 2740 . . . 4 seq1((𝐹 ∘ 1st ), (ℕ × {𝑤})) = seq1((𝐹 ∘ 1st ), (ℕ × {𝑤}))
185, 6, 8, 10, 12, 14, 15, 16, 17bfplem2 37783 . . 3 ((𝜑𝑤𝑋) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
193, 18exlimddv 1934 . 2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
20 oveq12 7457 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2120adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2213adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
2321, 22eqbrtrrd 5190 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦)))
24 cmetmet 25339 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
254, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
2625ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐷 ∈ (Met‘𝑋))
27 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥𝑋)
28 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑦𝑋)
29 metcl 24363 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
3026, 27, 28, 29syl3anc 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℝ)
317rpred 13099 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
3231ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℝ)
3332, 30remulcld 11320 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝐾 · (𝑥𝐷𝑦)) ∈ ℝ)
3430, 33suble0d 11881 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0 ↔ (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦))))
3523, 34mpbird 257 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0)
36 1cnd 11285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 1 ∈ ℂ)
3732recnd 11318 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℂ)
3830recnd 11318 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℂ)
3936, 37, 38subdird 11747 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))))
4038mullidd 11308 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 · (𝑥𝐷𝑦)) = (𝑥𝐷𝑦))
4140oveq1d 7463 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
4239, 41eqtrd 2780 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
43 1re 11290 . . . . . . . . . . . . 13 1 ∈ ℝ
44 resubcl 11600 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 − 𝐾) ∈ ℝ)
4543, 31, 44sylancr 586 . . . . . . . . . . . 12 (𝜑 → (1 − 𝐾) ∈ ℝ)
4645ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℝ)
4746recnd 11318 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℂ)
4847mul01d 11489 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · 0) = 0)
4935, 42, 483brtr4d 5198 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0))
50 0red 11293 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ∈ ℝ)
51 posdif 11783 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
5231, 43, 51sylancl 585 . . . . . . . . . . 11 (𝜑 → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
539, 52mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < (1 − 𝐾))
5453ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 < (1 − 𝐾))
55 lemul2 12147 . . . . . . . . 9 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 − 𝐾) ∈ ℝ ∧ 0 < (1 − 𝐾))) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5630, 50, 46, 54, 55syl112anc 1374 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5749, 56mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ 0)
58 metge0 24376 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
5926, 27, 28, 58syl3anc 1371 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ≤ (𝑥𝐷𝑦))
60 0re 11292 . . . . . . . 8 0 ∈ ℝ
61 letri3 11375 . . . . . . . 8 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6230, 60, 61sylancl 585 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6357, 59, 62mpbir2and 712 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) = 0)
64 meteq0 24370 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6526, 27, 28, 64syl3anc 1371 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6663, 65mpbid 232 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥 = 𝑦)
6766ex 412 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
6867ralrimivva 3208 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
69 fveq2 6920 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
70 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
7169, 70eqeq12d 2756 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑧) = 𝑧))
7271anbi1d 630 . . . . . 6 (𝑥 = 𝑧 → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) ↔ ((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦)))
73 equequ1 2024 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
7472, 73imbi12d 344 . . . . 5 (𝑥 = 𝑧 → ((((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7574ralbidv 3184 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7675cbvralvw 3243 . . 3 (∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
7768, 76sylib 218 . 2 (𝜑 → ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
78 fveq2 6920 . . . 4 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
79 id 22 . . . 4 (𝑧 = 𝑦𝑧 = 𝑦)
8078, 79eqeq12d 2756 . . 3 (𝑧 = 𝑦 → ((𝐹𝑧) = 𝑧 ↔ (𝐹𝑦) = 𝑦))
8180reu4 3753 . 2 (∃!𝑧𝑋 (𝐹𝑧) = 𝑧 ↔ (∃𝑧𝑋 (𝐹𝑧) = 𝑧 ∧ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
8219, 77, 81sylanbrc 582 1 (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  c0 4352  {csn 4648   class class class wbr 5166   × cxp 5698  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325  cmin 11520  cn 12293  +crp 13057  seqcseq 14052  Metcmet 21373  MetOpencmopn 21377  CMetccmet 25307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-bases 22974  df-ntr 23049  df-nei 23127  df-lm 23258  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-cfil 25308  df-cau 25309  df-cmet 25310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator