Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfp Structured version   Visualization version   GIF version

Theorem bfp 35982
Description: Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if 𝐹 has two fixed points, then the distance between them is less than 𝐾 times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
bfp (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐾(𝑧)

Proof of Theorem bfp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
2 n0 4280 . . . 4 (𝑋 ≠ ∅ ↔ ∃𝑤 𝑤𝑋)
31, 2sylib 217 . . 3 (𝜑 → ∃𝑤 𝑤𝑋)
4 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
54adantr 481 . . . 4 ((𝜑𝑤𝑋) → 𝐷 ∈ (CMet‘𝑋))
61adantr 481 . . . 4 ((𝜑𝑤𝑋) → 𝑋 ≠ ∅)
7 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
87adantr 481 . . . 4 ((𝜑𝑤𝑋) → 𝐾 ∈ ℝ+)
9 bfp.5 . . . . 5 (𝜑𝐾 < 1)
109adantr 481 . . . 4 ((𝜑𝑤𝑋) → 𝐾 < 1)
11 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
1211adantr 481 . . . 4 ((𝜑𝑤𝑋) → 𝐹:𝑋𝑋)
13 bfp.7 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
1413adantlr 712 . . . 4 (((𝜑𝑤𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
15 eqid 2738 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
16 simpr 485 . . . 4 ((𝜑𝑤𝑋) → 𝑤𝑋)
17 eqid 2738 . . . 4 seq1((𝐹 ∘ 1st ), (ℕ × {𝑤})) = seq1((𝐹 ∘ 1st ), (ℕ × {𝑤}))
185, 6, 8, 10, 12, 14, 15, 16, 17bfplem2 35981 . . 3 ((𝜑𝑤𝑋) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
193, 18exlimddv 1938 . 2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
20 oveq12 7284 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2120adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2213adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
2321, 22eqbrtrrd 5098 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦)))
24 cmetmet 24450 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
254, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
2625ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐷 ∈ (Met‘𝑋))
27 simplrl 774 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥𝑋)
28 simplrr 775 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑦𝑋)
29 metcl 23485 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
3026, 27, 28, 29syl3anc 1370 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℝ)
317rpred 12772 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
3231ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℝ)
3332, 30remulcld 11005 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝐾 · (𝑥𝐷𝑦)) ∈ ℝ)
3430, 33suble0d 11566 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0 ↔ (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦))))
3523, 34mpbird 256 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0)
36 1cnd 10970 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 1 ∈ ℂ)
3732recnd 11003 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℂ)
3830recnd 11003 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℂ)
3936, 37, 38subdird 11432 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))))
4038mulid2d 10993 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 · (𝑥𝐷𝑦)) = (𝑥𝐷𝑦))
4140oveq1d 7290 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
4239, 41eqtrd 2778 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
43 1re 10975 . . . . . . . . . . . . 13 1 ∈ ℝ
44 resubcl 11285 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 − 𝐾) ∈ ℝ)
4543, 31, 44sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1 − 𝐾) ∈ ℝ)
4645ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℝ)
4746recnd 11003 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℂ)
4847mul01d 11174 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · 0) = 0)
4935, 42, 483brtr4d 5106 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0))
50 0red 10978 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ∈ ℝ)
51 posdif 11468 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
5231, 43, 51sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
539, 52mpbid 231 . . . . . . . . . 10 (𝜑 → 0 < (1 − 𝐾))
5453ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 < (1 − 𝐾))
55 lemul2 11828 . . . . . . . . 9 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 − 𝐾) ∈ ℝ ∧ 0 < (1 − 𝐾))) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5630, 50, 46, 54, 55syl112anc 1373 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5749, 56mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ 0)
58 metge0 23498 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
5926, 27, 28, 58syl3anc 1370 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ≤ (𝑥𝐷𝑦))
60 0re 10977 . . . . . . . 8 0 ∈ ℝ
61 letri3 11060 . . . . . . . 8 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6230, 60, 61sylancl 586 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6357, 59, 62mpbir2and 710 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) = 0)
64 meteq0 23492 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6526, 27, 28, 64syl3anc 1370 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6663, 65mpbid 231 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥 = 𝑦)
6766ex 413 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
6867ralrimivva 3123 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
69 fveq2 6774 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
70 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
7169, 70eqeq12d 2754 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑧) = 𝑧))
7271anbi1d 630 . . . . . 6 (𝑥 = 𝑧 → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) ↔ ((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦)))
73 equequ1 2028 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
7472, 73imbi12d 345 . . . . 5 (𝑥 = 𝑧 → ((((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7574ralbidv 3112 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7675cbvralvw 3383 . . 3 (∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
7768, 76sylib 217 . 2 (𝜑 → ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
78 fveq2 6774 . . . 4 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
79 id 22 . . . 4 (𝑧 = 𝑦𝑧 = 𝑦)
8078, 79eqeq12d 2754 . . 3 (𝑧 = 𝑦 → ((𝐹𝑧) = 𝑧 ↔ (𝐹𝑦) = 𝑦))
8180reu4 3666 . 2 (∃!𝑧𝑋 (𝐹𝑧) = 𝑧 ↔ (∃𝑧𝑋 (𝐹𝑧) = 𝑧 ∧ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
8219, 77, 81sylanbrc 583 1 (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  ∃!wreu 3066  c0 4256  {csn 4561   class class class wbr 5074   × cxp 5587  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  +crp 12730  seqcseq 13721  Metcmet 20583  MetOpencmopn 20587  CMetccmet 24418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-bases 22096  df-ntr 22171  df-nei 22249  df-lm 22380  df-haus 22466  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-cfil 24419  df-cau 24420  df-cmet 24421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator