Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfp Structured version   Visualization version   GIF version

Theorem bfp 37937
Description: Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if 𝐹 has two fixed points, then the distance between them is less than 𝐾 times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
bfp (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐾(𝑧)

Proof of Theorem bfp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
2 n0 4302 . . . 4 (𝑋 ≠ ∅ ↔ ∃𝑤 𝑤𝑋)
31, 2sylib 218 . . 3 (𝜑 → ∃𝑤 𝑤𝑋)
4 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
54adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝐷 ∈ (CMet‘𝑋))
61adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝑋 ≠ ∅)
7 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
87adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝐾 ∈ ℝ+)
9 bfp.5 . . . . 5 (𝜑𝐾 < 1)
109adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝐾 < 1)
11 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
1211adantr 480 . . . 4 ((𝜑𝑤𝑋) → 𝐹:𝑋𝑋)
13 bfp.7 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
1413adantlr 715 . . . 4 (((𝜑𝑤𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
15 eqid 2733 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
16 simpr 484 . . . 4 ((𝜑𝑤𝑋) → 𝑤𝑋)
17 eqid 2733 . . . 4 seq1((𝐹 ∘ 1st ), (ℕ × {𝑤})) = seq1((𝐹 ∘ 1st ), (ℕ × {𝑤}))
185, 6, 8, 10, 12, 14, 15, 16, 17bfplem2 37936 . . 3 ((𝜑𝑤𝑋) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
193, 18exlimddv 1936 . 2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
20 oveq12 7364 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2120adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2213adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
2321, 22eqbrtrrd 5119 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦)))
24 cmetmet 25233 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
254, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
2625ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐷 ∈ (Met‘𝑋))
27 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥𝑋)
28 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑦𝑋)
29 metcl 24267 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
3026, 27, 28, 29syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℝ)
317rpred 12940 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
3231ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℝ)
3332, 30remulcld 11153 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝐾 · (𝑥𝐷𝑦)) ∈ ℝ)
3430, 33suble0d 11719 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0 ↔ (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦))))
3523, 34mpbird 257 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0)
36 1cnd 11118 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 1 ∈ ℂ)
3732recnd 11151 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℂ)
3830recnd 11151 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℂ)
3936, 37, 38subdird 11585 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))))
4038mullidd 11141 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 · (𝑥𝐷𝑦)) = (𝑥𝐷𝑦))
4140oveq1d 7370 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
4239, 41eqtrd 2768 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
43 1re 11123 . . . . . . . . . . . . 13 1 ∈ ℝ
44 resubcl 11436 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 − 𝐾) ∈ ℝ)
4543, 31, 44sylancr 587 . . . . . . . . . . . 12 (𝜑 → (1 − 𝐾) ∈ ℝ)
4645ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℝ)
4746recnd 11151 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℂ)
4847mul01d 11323 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · 0) = 0)
4935, 42, 483brtr4d 5127 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0))
50 0red 11126 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ∈ ℝ)
51 posdif 11621 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
5231, 43, 51sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
539, 52mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < (1 − 𝐾))
5453ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 < (1 − 𝐾))
55 lemul2 11985 . . . . . . . . 9 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 − 𝐾) ∈ ℝ ∧ 0 < (1 − 𝐾))) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5630, 50, 46, 54, 55syl112anc 1376 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5749, 56mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ 0)
58 metge0 24280 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
5926, 27, 28, 58syl3anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ≤ (𝑥𝐷𝑦))
60 0re 11125 . . . . . . . 8 0 ∈ ℝ
61 letri3 11209 . . . . . . . 8 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6230, 60, 61sylancl 586 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6357, 59, 62mpbir2and 713 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) = 0)
64 meteq0 24274 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6526, 27, 28, 64syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6663, 65mpbid 232 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥 = 𝑦)
6766ex 412 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
6867ralrimivva 3176 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
69 fveq2 6831 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
70 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
7169, 70eqeq12d 2749 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑧) = 𝑧))
7271anbi1d 631 . . . . . 6 (𝑥 = 𝑧 → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) ↔ ((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦)))
73 equequ1 2026 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
7472, 73imbi12d 344 . . . . 5 (𝑥 = 𝑧 → ((((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7574ralbidv 3156 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7675cbvralvw 3211 . . 3 (∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
7768, 76sylib 218 . 2 (𝜑 → ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
78 fveq2 6831 . . . 4 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
79 id 22 . . . 4 (𝑧 = 𝑦𝑧 = 𝑦)
8078, 79eqeq12d 2749 . . 3 (𝑧 = 𝑦 → ((𝐹𝑧) = 𝑧 ↔ (𝐹𝑦) = 𝑦))
8180reu4 3686 . 2 (∃!𝑧𝑋 (𝐹𝑧) = 𝑧 ↔ (∃𝑧𝑋 (𝐹𝑧) = 𝑧 ∧ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
8219, 77, 81sylanbrc 583 1 (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  ∃!wreu 3345  c0 4282  {csn 4577   class class class wbr 5095   × cxp 5619  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  1st c1st 7928  cr 11016  0cc0 11017  1c1 11018   · cmul 11022   < clt 11157  cle 11158  cmin 11355  cn 12136  +crp 12896  seqcseq 13915  Metcmet 21286  MetOpencmopn 21290  CMetccmet 25201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-rest 17333  df-topgen 17354  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-top 22829  df-topon 22846  df-bases 22881  df-ntr 22955  df-nei 23033  df-lm 23164  df-haus 23250  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-cfil 25202  df-cau 25203  df-cmet 25204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator