Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfp Structured version   Visualization version   GIF version

Theorem bfp 37302
Description: Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if 𝐹 has two fixed points, then the distance between them is less than 𝐾 times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
bfp (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐾(𝑧)

Proof of Theorem bfp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
2 n0 4348 . . . 4 (𝑋 ≠ ∅ ↔ ∃𝑤 𝑤𝑋)
31, 2sylib 217 . . 3 (𝜑 → ∃𝑤 𝑤𝑋)
4 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
54adantr 479 . . . 4 ((𝜑𝑤𝑋) → 𝐷 ∈ (CMet‘𝑋))
61adantr 479 . . . 4 ((𝜑𝑤𝑋) → 𝑋 ≠ ∅)
7 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
87adantr 479 . . . 4 ((𝜑𝑤𝑋) → 𝐾 ∈ ℝ+)
9 bfp.5 . . . . 5 (𝜑𝐾 < 1)
109adantr 479 . . . 4 ((𝜑𝑤𝑋) → 𝐾 < 1)
11 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
1211adantr 479 . . . 4 ((𝜑𝑤𝑋) → 𝐹:𝑋𝑋)
13 bfp.7 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
1413adantlr 713 . . . 4 (((𝜑𝑤𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
15 eqid 2727 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
16 simpr 483 . . . 4 ((𝜑𝑤𝑋) → 𝑤𝑋)
17 eqid 2727 . . . 4 seq1((𝐹 ∘ 1st ), (ℕ × {𝑤})) = seq1((𝐹 ∘ 1st ), (ℕ × {𝑤}))
185, 6, 8, 10, 12, 14, 15, 16, 17bfplem2 37301 . . 3 ((𝜑𝑤𝑋) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
193, 18exlimddv 1930 . 2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
20 oveq12 7433 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2120adantl 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) = (𝑥𝐷𝑦))
2213adantr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
2321, 22eqbrtrrd 5174 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦)))
24 cmetmet 25232 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
254, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
2625ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐷 ∈ (Met‘𝑋))
27 simplrl 775 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥𝑋)
28 simplrr 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑦𝑋)
29 metcl 24256 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
3026, 27, 28, 29syl3anc 1368 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℝ)
317rpred 13054 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
3231ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℝ)
3332, 30remulcld 11280 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝐾 · (𝑥𝐷𝑦)) ∈ ℝ)
3430, 33suble0d 11841 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0 ↔ (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦))))
3523, 34mpbird 256 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0)
36 1cnd 11245 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 1 ∈ ℂ)
3732recnd 11278 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝐾 ∈ ℂ)
3830recnd 11278 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℂ)
3936, 37, 38subdird 11707 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))))
4038mullidd 11268 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 · (𝑥𝐷𝑦)) = (𝑥𝐷𝑦))
4140oveq1d 7439 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
4239, 41eqtrd 2767 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))))
43 1re 11250 . . . . . . . . . . . . 13 1 ∈ ℝ
44 resubcl 11560 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 − 𝐾) ∈ ℝ)
4543, 31, 44sylancr 585 . . . . . . . . . . . 12 (𝜑 → (1 − 𝐾) ∈ ℝ)
4645ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℝ)
4746recnd 11278 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℂ)
4847mul01d 11449 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · 0) = 0)
4935, 42, 483brtr4d 5182 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0))
50 0red 11253 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ∈ ℝ)
51 posdif 11743 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
5231, 43, 51sylancl 584 . . . . . . . . . . 11 (𝜑 → (𝐾 < 1 ↔ 0 < (1 − 𝐾)))
539, 52mpbid 231 . . . . . . . . . 10 (𝜑 → 0 < (1 − 𝐾))
5453ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 < (1 − 𝐾))
55 lemul2 12103 . . . . . . . . 9 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 − 𝐾) ∈ ℝ ∧ 0 < (1 − 𝐾))) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5630, 50, 46, 54, 55syl112anc 1371 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)))
5749, 56mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ 0)
58 metge0 24269 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
5926, 27, 28, 58syl3anc 1368 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 0 ≤ (𝑥𝐷𝑦))
60 0re 11252 . . . . . . . 8 0 ∈ ℝ
61 letri3 11335 . . . . . . . 8 (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6230, 60, 61sylancl 584 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
6357, 59, 62mpbir2and 711 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → (𝑥𝐷𝑦) = 0)
64 meteq0 24263 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6526, 27, 28, 64syl3anc 1368 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6663, 65mpbid 231 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦)) → 𝑥 = 𝑦)
6766ex 411 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
6867ralrimivva 3196 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦))
69 fveq2 6900 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
70 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
7169, 70eqeq12d 2743 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑧) = 𝑧))
7271anbi1d 629 . . . . . 6 (𝑥 = 𝑧 → (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) ↔ ((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦)))
73 equequ1 2020 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
7472, 73imbi12d 343 . . . . 5 (𝑥 = 𝑧 → ((((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7574ralbidv 3173 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
7675cbvralvw 3230 . . 3 (∀𝑥𝑋𝑦𝑋 (((𝐹𝑥) = 𝑥 ∧ (𝐹𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
7768, 76sylib 217 . 2 (𝜑 → ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦))
78 fveq2 6900 . . . 4 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
79 id 22 . . . 4 (𝑧 = 𝑦𝑧 = 𝑦)
8078, 79eqeq12d 2743 . . 3 (𝑧 = 𝑦 → ((𝐹𝑧) = 𝑧 ↔ (𝐹𝑦) = 𝑦))
8180reu4 3726 . 2 (∃!𝑧𝑋 (𝐹𝑧) = 𝑧 ↔ (∃𝑧𝑋 (𝐹𝑧) = 𝑧 ∧ ∀𝑧𝑋𝑦𝑋 (((𝐹𝑧) = 𝑧 ∧ (𝐹𝑦) = 𝑦) → 𝑧 = 𝑦)))
8219, 77, 81sylanbrc 581 1 (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2936  wral 3057  wrex 3066  ∃!wreu 3370  c0 4324  {csn 4630   class class class wbr 5150   × cxp 5678  ccom 5684  wf 6547  cfv 6551  (class class class)co 7424  1st c1st 7995  cr 11143  0cc0 11144  1c1 11145   · cmul 11149   < clt 11284  cle 11285  cmin 11480  cn 12248  +crp 13012  seqcseq 14004  Metcmet 21270  MetOpencmopn 21274  CMetccmet 25200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-q 12969  df-rp 13013  df-xneg 13130  df-xadd 13131  df-xmul 13132  df-ico 13368  df-icc 13369  df-fz 13523  df-fzo 13666  df-fl 13795  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-rlim 15471  df-sum 15671  df-rest 17409  df-topgen 17430  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-top 22814  df-topon 22831  df-bases 22867  df-ntr 22942  df-nei 23020  df-lm 23151  df-haus 23237  df-fil 23768  df-fm 23860  df-flim 23861  df-flf 23862  df-cfil 25201  df-cau 25202  df-cmet 25203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator