Step | Hyp | Ref
| Expression |
1 | | bfp.3 |
. . . 4
⊢ (𝜑 → 𝑋 ≠ ∅) |
2 | | n0 4280 |
. . . 4
⊢ (𝑋 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝑋) |
3 | 1, 2 | sylib 217 |
. . 3
⊢ (𝜑 → ∃𝑤 𝑤 ∈ 𝑋) |
4 | | bfp.2 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
5 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝐷 ∈ (CMet‘𝑋)) |
6 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝑋 ≠ ∅) |
7 | | bfp.4 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℝ+) |
8 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝐾 ∈
ℝ+) |
9 | | bfp.5 |
. . . . 5
⊢ (𝜑 → 𝐾 < 1) |
10 | 9 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝐾 < 1) |
11 | | bfp.6 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶𝑋) |
12 | 11 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝐹:𝑋⟶𝑋) |
13 | | bfp.7 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) |
14 | 13 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) |
15 | | eqid 2738 |
. . . 4
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
16 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝑋) |
17 | | eqid 2738 |
. . . 4
⊢
seq1((𝐹 ∘
1st ), (ℕ × {𝑤})) = seq1((𝐹 ∘ 1st ), (ℕ ×
{𝑤})) |
18 | 5, 6, 8, 10, 12, 14, 15, 16, 17 | bfplem2 35981 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → ∃𝑧 ∈ 𝑋 (𝐹‘𝑧) = 𝑧) |
19 | 3, 18 | exlimddv 1938 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝑋 (𝐹‘𝑧) = 𝑧) |
20 | | oveq12 7284 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) = (𝑥𝐷𝑦)) |
21 | 20 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) = (𝑥𝐷𝑦)) |
22 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) |
23 | 21, 22 | eqbrtrrd 5098 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦))) |
24 | | cmetmet 24450 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
25 | 4, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
26 | 25 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 𝐷 ∈ (Met‘𝑋)) |
27 | | simplrl 774 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 𝑥 ∈ 𝑋) |
28 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 𝑦 ∈ 𝑋) |
29 | | metcl 23485 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈ ℝ) |
30 | 26, 27, 28, 29 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℝ) |
31 | 7 | rpred 12772 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℝ) |
32 | 31 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 𝐾 ∈ ℝ) |
33 | 32, 30 | remulcld 11005 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (𝐾 · (𝑥𝐷𝑦)) ∈ ℝ) |
34 | 30, 33 | suble0d 11566 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0 ↔ (𝑥𝐷𝑦) ≤ (𝐾 · (𝑥𝐷𝑦)))) |
35 | 23, 34 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦))) ≤ 0) |
36 | | 1cnd 10970 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 1 ∈ ℂ) |
37 | 32 | recnd 11003 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 𝐾 ∈ ℂ) |
38 | 30 | recnd 11003 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (𝑥𝐷𝑦) ∈ ℂ) |
39 | 36, 37, 38 | subdird 11432 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦)))) |
40 | 38 | mulid2d 10993 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (1 · (𝑥𝐷𝑦)) = (𝑥𝐷𝑦)) |
41 | 40 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((1 · (𝑥𝐷𝑦)) − (𝐾 · (𝑥𝐷𝑦))) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦)))) |
42 | 39, 41 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) = ((𝑥𝐷𝑦) − (𝐾 · (𝑥𝐷𝑦)))) |
43 | | 1re 10975 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ |
44 | | resubcl 11285 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℝ ∧ 𝐾
∈ ℝ) → (1 − 𝐾) ∈ ℝ) |
45 | 43, 31, 44 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 − 𝐾) ∈
ℝ) |
46 | 45 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℝ) |
47 | 46 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (1 − 𝐾) ∈ ℂ) |
48 | 47 | mul01d 11174 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((1 − 𝐾) · 0) = 0) |
49 | 35, 42, 48 | 3brtr4d 5106 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0)) |
50 | | 0red 10978 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 0 ∈ ℝ) |
51 | | posdif 11468 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℝ ∧ 1 ∈
ℝ) → (𝐾 < 1
↔ 0 < (1 − 𝐾))) |
52 | 31, 43, 51 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾 < 1 ↔ 0 < (1 − 𝐾))) |
53 | 9, 52 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < (1 − 𝐾)) |
54 | 53 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 0 < (1 − 𝐾)) |
55 | | lemul2 11828 |
. . . . . . . . 9
⊢ (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ ∧
((1 − 𝐾) ∈
ℝ ∧ 0 < (1 − 𝐾))) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0))) |
56 | 30, 50, 46, 54, 55 | syl112anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((1 − 𝐾) · (𝑥𝐷𝑦)) ≤ ((1 − 𝐾) · 0))) |
57 | 49, 56 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (𝑥𝐷𝑦) ≤ 0) |
58 | | metge0 23498 |
. . . . . . . 8
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑦)) |
59 | 26, 27, 28, 58 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 0 ≤ (𝑥𝐷𝑦)) |
60 | | 0re 10977 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
61 | | letri3 11060 |
. . . . . . . 8
⊢ (((𝑥𝐷𝑦) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
62 | 30, 60, 61 | sylancl 586 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
63 | 57, 59, 62 | mpbir2and 710 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → (𝑥𝐷𝑦) = 0) |
64 | | meteq0 23492 |
. . . . . . 7
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
65 | 26, 27, 28, 64 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
66 | 63, 65 | mpbid 231 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ ((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦)) → 𝑥 = 𝑦) |
67 | 66 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦) → 𝑥 = 𝑦)) |
68 | 67 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦) → 𝑥 = 𝑦)) |
69 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
70 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
71 | 69, 70 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑧) = 𝑧)) |
72 | 71 | anbi1d 630 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦) ↔ ((𝐹‘𝑧) = 𝑧 ∧ (𝐹‘𝑦) = 𝑦))) |
73 | | equequ1 2028 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) |
74 | 72, 73 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ (((𝐹‘𝑧) = 𝑧 ∧ (𝐹‘𝑦) = 𝑦) → 𝑧 = 𝑦))) |
75 | 74 | ralbidv 3112 |
. . . 4
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑋 (((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝑋 (((𝐹‘𝑧) = 𝑧 ∧ (𝐹‘𝑦) = 𝑦) → 𝑧 = 𝑦))) |
76 | 75 | cbvralvw 3383 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (((𝐹‘𝑥) = 𝑥 ∧ (𝐹‘𝑦) = 𝑦) → 𝑥 = 𝑦) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝐹‘𝑧) = 𝑧 ∧ (𝐹‘𝑦) = 𝑦) → 𝑧 = 𝑦)) |
77 | 68, 76 | sylib 217 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝐹‘𝑧) = 𝑧 ∧ (𝐹‘𝑦) = 𝑦) → 𝑧 = 𝑦)) |
78 | | fveq2 6774 |
. . . 4
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
79 | | id 22 |
. . . 4
⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) |
80 | 78, 79 | eqeq12d 2754 |
. . 3
⊢ (𝑧 = 𝑦 → ((𝐹‘𝑧) = 𝑧 ↔ (𝐹‘𝑦) = 𝑦)) |
81 | 80 | reu4 3666 |
. 2
⊢
(∃!𝑧 ∈
𝑋 (𝐹‘𝑧) = 𝑧 ↔ (∃𝑧 ∈ 𝑋 (𝐹‘𝑧) = 𝑧 ∧ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝐹‘𝑧) = 𝑧 ∧ (𝐹‘𝑦) = 𝑦) → 𝑧 = 𝑦))) |
82 | 19, 77, 81 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑧 ∈ 𝑋 (𝐹‘𝑧) = 𝑧) |