Step | Hyp | Ref
| Expression |
1 | | bfp.3 |
. . . 4
β’ (π β π β β
) |
2 | | n0 4346 |
. . . 4
β’ (π β β
β
βπ€ π€ β π) |
3 | 1, 2 | sylib 217 |
. . 3
β’ (π β βπ€ π€ β π) |
4 | | bfp.2 |
. . . . 5
β’ (π β π· β (CMetβπ)) |
5 | 4 | adantr 482 |
. . . 4
β’ ((π β§ π€ β π) β π· β (CMetβπ)) |
6 | 1 | adantr 482 |
. . . 4
β’ ((π β§ π€ β π) β π β β
) |
7 | | bfp.4 |
. . . . 5
β’ (π β πΎ β
β+) |
8 | 7 | adantr 482 |
. . . 4
β’ ((π β§ π€ β π) β πΎ β
β+) |
9 | | bfp.5 |
. . . . 5
β’ (π β πΎ < 1) |
10 | 9 | adantr 482 |
. . . 4
β’ ((π β§ π€ β π) β πΎ < 1) |
11 | | bfp.6 |
. . . . 5
β’ (π β πΉ:πβΆπ) |
12 | 11 | adantr 482 |
. . . 4
β’ ((π β§ π€ β π) β πΉ:πβΆπ) |
13 | | bfp.7 |
. . . . 5
β’ ((π β§ (π₯ β π β§ π¦ β π)) β ((πΉβπ₯)π·(πΉβπ¦)) β€ (πΎ Β· (π₯π·π¦))) |
14 | 13 | adantlr 714 |
. . . 4
β’ (((π β§ π€ β π) β§ (π₯ β π β§ π¦ β π)) β ((πΉβπ₯)π·(πΉβπ¦)) β€ (πΎ Β· (π₯π·π¦))) |
15 | | eqid 2733 |
. . . 4
β’
(MetOpenβπ·) =
(MetOpenβπ·) |
16 | | simpr 486 |
. . . 4
β’ ((π β§ π€ β π) β π€ β π) |
17 | | eqid 2733 |
. . . 4
β’
seq1((πΉ β
1st ), (β Γ {π€})) = seq1((πΉ β 1st ), (β Γ
{π€})) |
18 | 5, 6, 8, 10, 12, 14, 15, 16, 17 | bfplem2 36680 |
. . 3
β’ ((π β§ π€ β π) β βπ§ β π (πΉβπ§) = π§) |
19 | 3, 18 | exlimddv 1939 |
. 2
β’ (π β βπ§ β π (πΉβπ§) = π§) |
20 | | oveq12 7415 |
. . . . . . . . . . . 12
β’ (((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦) β ((πΉβπ₯)π·(πΉβπ¦)) = (π₯π·π¦)) |
21 | 20 | adantl 483 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((πΉβπ₯)π·(πΉβπ¦)) = (π₯π·π¦)) |
22 | 13 | adantr 482 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((πΉβπ₯)π·(πΉβπ¦)) β€ (πΎ Β· (π₯π·π¦))) |
23 | 21, 22 | eqbrtrrd 5172 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (π₯π·π¦) β€ (πΎ Β· (π₯π·π¦))) |
24 | | cmetmet 24795 |
. . . . . . . . . . . . . 14
β’ (π· β (CMetβπ) β π· β (Metβπ)) |
25 | 4, 24 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π· β (Metβπ)) |
26 | 25 | ad2antrr 725 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β π· β (Metβπ)) |
27 | | simplrl 776 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β π₯ β π) |
28 | | simplrr 777 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β π¦ β π) |
29 | | metcl 23830 |
. . . . . . . . . . . 12
β’ ((π· β (Metβπ) β§ π₯ β π β§ π¦ β π) β (π₯π·π¦) β β) |
30 | 26, 27, 28, 29 | syl3anc 1372 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (π₯π·π¦) β β) |
31 | 7 | rpred 13013 |
. . . . . . . . . . . . 13
β’ (π β πΎ β β) |
32 | 31 | ad2antrr 725 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β πΎ β β) |
33 | 32, 30 | remulcld 11241 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (πΎ Β· (π₯π·π¦)) β β) |
34 | 30, 33 | suble0d 11802 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (((π₯π·π¦) β (πΎ Β· (π₯π·π¦))) β€ 0 β (π₯π·π¦) β€ (πΎ Β· (π₯π·π¦)))) |
35 | 23, 34 | mpbird 257 |
. . . . . . . . 9
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((π₯π·π¦) β (πΎ Β· (π₯π·π¦))) β€ 0) |
36 | | 1cnd 11206 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β 1 β β) |
37 | 32 | recnd 11239 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β πΎ β β) |
38 | 30 | recnd 11239 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (π₯π·π¦) β β) |
39 | 36, 37, 38 | subdird 11668 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((1 β πΎ) Β· (π₯π·π¦)) = ((1 Β· (π₯π·π¦)) β (πΎ Β· (π₯π·π¦)))) |
40 | 38 | mullidd 11229 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (1 Β· (π₯π·π¦)) = (π₯π·π¦)) |
41 | 40 | oveq1d 7421 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((1 Β· (π₯π·π¦)) β (πΎ Β· (π₯π·π¦))) = ((π₯π·π¦) β (πΎ Β· (π₯π·π¦)))) |
42 | 39, 41 | eqtrd 2773 |
. . . . . . . . 9
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((1 β πΎ) Β· (π₯π·π¦)) = ((π₯π·π¦) β (πΎ Β· (π₯π·π¦)))) |
43 | | 1re 11211 |
. . . . . . . . . . . . 13
β’ 1 β
β |
44 | | resubcl 11521 |
. . . . . . . . . . . . 13
β’ ((1
β β β§ πΎ
β β) β (1 β πΎ) β β) |
45 | 43, 31, 44 | sylancr 588 |
. . . . . . . . . . . 12
β’ (π β (1 β πΎ) β
β) |
46 | 45 | ad2antrr 725 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (1 β πΎ) β β) |
47 | 46 | recnd 11239 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (1 β πΎ) β β) |
48 | 47 | mul01d 11410 |
. . . . . . . . 9
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((1 β πΎ) Β· 0) = 0) |
49 | 35, 42, 48 | 3brtr4d 5180 |
. . . . . . . 8
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((1 β πΎ) Β· (π₯π·π¦)) β€ ((1 β πΎ) Β· 0)) |
50 | | 0red 11214 |
. . . . . . . . 9
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β 0 β β) |
51 | | posdif 11704 |
. . . . . . . . . . . 12
β’ ((πΎ β β β§ 1 β
β) β (πΎ < 1
β 0 < (1 β πΎ))) |
52 | 31, 43, 51 | sylancl 587 |
. . . . . . . . . . 11
β’ (π β (πΎ < 1 β 0 < (1 β πΎ))) |
53 | 9, 52 | mpbid 231 |
. . . . . . . . . 10
β’ (π β 0 < (1 β πΎ)) |
54 | 53 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β 0 < (1 β πΎ)) |
55 | | lemul2 12064 |
. . . . . . . . 9
β’ (((π₯π·π¦) β β β§ 0 β β β§
((1 β πΎ) β
β β§ 0 < (1 β πΎ))) β ((π₯π·π¦) β€ 0 β ((1 β πΎ) Β· (π₯π·π¦)) β€ ((1 β πΎ) Β· 0))) |
56 | 30, 50, 46, 54, 55 | syl112anc 1375 |
. . . . . . . 8
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((π₯π·π¦) β€ 0 β ((1 β πΎ) Β· (π₯π·π¦)) β€ ((1 β πΎ) Β· 0))) |
57 | 49, 56 | mpbird 257 |
. . . . . . 7
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (π₯π·π¦) β€ 0) |
58 | | metge0 23843 |
. . . . . . . 8
β’ ((π· β (Metβπ) β§ π₯ β π β§ π¦ β π) β 0 β€ (π₯π·π¦)) |
59 | 26, 27, 28, 58 | syl3anc 1372 |
. . . . . . 7
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β 0 β€ (π₯π·π¦)) |
60 | | 0re 11213 |
. . . . . . . 8
β’ 0 β
β |
61 | | letri3 11296 |
. . . . . . . 8
β’ (((π₯π·π¦) β β β§ 0 β β)
β ((π₯π·π¦) = 0 β ((π₯π·π¦) β€ 0 β§ 0 β€ (π₯π·π¦)))) |
62 | 30, 60, 61 | sylancl 587 |
. . . . . . 7
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((π₯π·π¦) = 0 β ((π₯π·π¦) β€ 0 β§ 0 β€ (π₯π·π¦)))) |
63 | 57, 59, 62 | mpbir2and 712 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β (π₯π·π¦) = 0) |
64 | | meteq0 23837 |
. . . . . . 7
β’ ((π· β (Metβπ) β§ π₯ β π β§ π¦ β π) β ((π₯π·π¦) = 0 β π₯ = π¦)) |
65 | 26, 27, 28, 64 | syl3anc 1372 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β ((π₯π·π¦) = 0 β π₯ = π¦)) |
66 | 63, 65 | mpbid 231 |
. . . . 5
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ ((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦)) β π₯ = π¦) |
67 | 66 | ex 414 |
. . . 4
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦) β π₯ = π¦)) |
68 | 67 | ralrimivva 3201 |
. . 3
β’ (π β βπ₯ β π βπ¦ β π (((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦) β π₯ = π¦)) |
69 | | fveq2 6889 |
. . . . . . . 8
β’ (π₯ = π§ β (πΉβπ₯) = (πΉβπ§)) |
70 | | id 22 |
. . . . . . . 8
β’ (π₯ = π§ β π₯ = π§) |
71 | 69, 70 | eqeq12d 2749 |
. . . . . . 7
β’ (π₯ = π§ β ((πΉβπ₯) = π₯ β (πΉβπ§) = π§)) |
72 | 71 | anbi1d 631 |
. . . . . 6
β’ (π₯ = π§ β (((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦) β ((πΉβπ§) = π§ β§ (πΉβπ¦) = π¦))) |
73 | | equequ1 2029 |
. . . . . 6
β’ (π₯ = π§ β (π₯ = π¦ β π§ = π¦)) |
74 | 72, 73 | imbi12d 345 |
. . . . 5
β’ (π₯ = π§ β ((((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦) β π₯ = π¦) β (((πΉβπ§) = π§ β§ (πΉβπ¦) = π¦) β π§ = π¦))) |
75 | 74 | ralbidv 3178 |
. . . 4
β’ (π₯ = π§ β (βπ¦ β π (((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦) β π₯ = π¦) β βπ¦ β π (((πΉβπ§) = π§ β§ (πΉβπ¦) = π¦) β π§ = π¦))) |
76 | 75 | cbvralvw 3235 |
. . 3
β’
(βπ₯ β
π βπ¦ β π (((πΉβπ₯) = π₯ β§ (πΉβπ¦) = π¦) β π₯ = π¦) β βπ§ β π βπ¦ β π (((πΉβπ§) = π§ β§ (πΉβπ¦) = π¦) β π§ = π¦)) |
77 | 68, 76 | sylib 217 |
. 2
β’ (π β βπ§ β π βπ¦ β π (((πΉβπ§) = π§ β§ (πΉβπ¦) = π¦) β π§ = π¦)) |
78 | | fveq2 6889 |
. . . 4
β’ (π§ = π¦ β (πΉβπ§) = (πΉβπ¦)) |
79 | | id 22 |
. . . 4
β’ (π§ = π¦ β π§ = π¦) |
80 | 78, 79 | eqeq12d 2749 |
. . 3
β’ (π§ = π¦ β ((πΉβπ§) = π§ β (πΉβπ¦) = π¦)) |
81 | 80 | reu4 3727 |
. 2
β’
(β!π§ β
π (πΉβπ§) = π§ β (βπ§ β π (πΉβπ§) = π§ β§ βπ§ β π βπ¦ β π (((πΉβπ§) = π§ β§ (πΉβπ¦) = π¦) β π§ = π¦))) |
82 | 19, 77, 81 | sylanbrc 584 |
1
β’ (π β β!π§ β π (πΉβπ§) = π§) |