| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cxpi11d | Structured version Visualization version GIF version | ||
| Description: i to the powers of 𝐴 and 𝐵 are equal iff 𝐴 and 𝐵 are a multiple of 4 apart. EDITORIAL: This theorem may be revised to a more convenient form. (Contributed by SN, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| cxpi11d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| cxpi11d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| cxpi11d | ⊢ (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11087 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → i ∈ ℂ) |
| 3 | cxpi11d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 4 | cxpi11d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 5 | ine0 11573 | . . . 4 ⊢ i ≠ 0 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → i ≠ 0) |
| 7 | ine1 42287 | . . . 4 ⊢ i ≠ 1 | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → i ≠ 1) |
| 9 | 2, 3, 4, 6, 8 | cxp112d 42314 | . 2 ⊢ (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))))) |
| 10 | 2cn 12221 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 11 | picn 26383 | . . . . . . . . . 10 ⊢ π ∈ ℂ | |
| 12 | 10, 11 | mulcli 11141 | . . . . . . . . 9 ⊢ (2 · π) ∈ ℂ |
| 13 | 1, 12 | mulcli 11141 | . . . . . . . 8 ⊢ (i · (2 · π)) ∈ ℂ |
| 14 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (i · (2 · π)) ∈ ℂ) |
| 15 | zcn 12494 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 16 | logcl 26493 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0) → (log‘i) ∈ ℂ) | |
| 17 | 1, 5, 16 | mp2an 692 | . . . . . . . 8 ⊢ (log‘i) ∈ ℂ |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (log‘i) ∈ ℂ) |
| 19 | logccne0 26503 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ i ≠ 1) → (log‘i) ≠ 0) | |
| 20 | 1, 5, 7, 19 | mp3an 1463 | . . . . . . . 8 ⊢ (log‘i) ≠ 0 |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (log‘i) ≠ 0) |
| 22 | 14, 15, 18, 21 | div23d 11955 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (((i · (2 · π)) · 𝑛) / (log‘i)) = (((i · (2 · π)) / (log‘i)) · 𝑛)) |
| 23 | logi 26512 | . . . . . . . . 9 ⊢ (log‘i) = (i · (π / 2)) | |
| 24 | 23 | oveq2i 7364 | . . . . . . . 8 ⊢ ((i · (2 · π)) / (log‘i)) = ((i · (2 · π)) / (i · (π / 2))) |
| 25 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (2 · π) ∈ ℂ) |
| 26 | 2ne0 12250 | . . . . . . . . . . . 12 ⊢ 2 ≠ 0 | |
| 27 | 11, 10, 26 | divcli 11884 | . . . . . . . . . . 11 ⊢ (π / 2) ∈ ℂ |
| 28 | 27 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (π / 2) ∈ ℂ) |
| 29 | 1 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → i ∈ ℂ) |
| 30 | pine0 26385 | . . . . . . . . . . . 12 ⊢ π ≠ 0 | |
| 31 | 11, 10, 30, 26 | divne0i 11890 | . . . . . . . . . . 11 ⊢ (π / 2) ≠ 0 |
| 32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (π / 2) ≠ 0) |
| 33 | 5 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → i ≠ 0) |
| 34 | 25, 28, 29, 32, 33 | divcan5d 11944 | . . . . . . . . 9 ⊢ (⊤ → ((i · (2 · π)) / (i · (π / 2))) = ((2 · π) / (π / 2))) |
| 35 | 34 | mptru 1547 | . . . . . . . 8 ⊢ ((i · (2 · π)) / (i · (π / 2))) = ((2 · π) / (π / 2)) |
| 36 | 10, 11, 27, 31 | divassi 11898 | . . . . . . . . 9 ⊢ ((2 · π) / (π / 2)) = (2 · (π / (π / 2))) |
| 37 | 11 | a1i 11 | . . . . . . . . . . . 12 ⊢ (⊤ → π ∈ ℂ) |
| 38 | 2cnd 12224 | . . . . . . . . . . . 12 ⊢ (⊤ → 2 ∈ ℂ) | |
| 39 | 30 | a1i 11 | . . . . . . . . . . . 12 ⊢ (⊤ → π ≠ 0) |
| 40 | 26 | a1i 11 | . . . . . . . . . . . 12 ⊢ (⊤ → 2 ≠ 0) |
| 41 | 37, 38, 39, 40 | ddcand 11938 | . . . . . . . . . . 11 ⊢ (⊤ → (π / (π / 2)) = 2) |
| 42 | 41 | mptru 1547 | . . . . . . . . . 10 ⊢ (π / (π / 2)) = 2 |
| 43 | 42 | oveq2i 7364 | . . . . . . . . 9 ⊢ (2 · (π / (π / 2))) = (2 · 2) |
| 44 | 2t2e4 12305 | . . . . . . . . 9 ⊢ (2 · 2) = 4 | |
| 45 | 36, 43, 44 | 3eqtri 2756 | . . . . . . . 8 ⊢ ((2 · π) / (π / 2)) = 4 |
| 46 | 24, 35, 45 | 3eqtri 2756 | . . . . . . 7 ⊢ ((i · (2 · π)) / (log‘i)) = 4 |
| 47 | 46 | oveq1i 7363 | . . . . . 6 ⊢ (((i · (2 · π)) / (log‘i)) · 𝑛) = (4 · 𝑛) |
| 48 | 22, 47 | eqtrdi 2780 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (((i · (2 · π)) · 𝑛) / (log‘i)) = (4 · 𝑛)) |
| 49 | 48 | oveq2d 7369 | . . . 4 ⊢ (𝑛 ∈ ℤ → (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) = (𝐵 + (4 · 𝑛))) |
| 50 | 49 | eqeq2d 2740 | . . 3 ⊢ (𝑛 ∈ ℤ → (𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) ↔ 𝐴 = (𝐵 + (4 · 𝑛)))) |
| 51 | 50 | rexbiia 3074 | . 2 ⊢ (∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛))) |
| 52 | 9, 51 | bitrdi 287 | 1 ⊢ (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 ici 11030 + caddc 11031 · cmul 11033 / cdiv 11795 2c2 12201 4c4 12203 ℤcz 12489 πcpi 15991 logclog 26479 ↑𝑐ccxp 26480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-log 26481 df-cxp 26482 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |