![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cxpi11d | Structured version Visualization version GIF version |
Description: i to the powers of 𝐴 and 𝐵 are equal iff 𝐴 and 𝐵 are a multiple of 4 apart. EDITORIAL: This theorem may be revised to a more convenient form. (Contributed by SN, 25-Apr-2025.) |
Ref | Expression |
---|---|
cxpi11d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cxpi11d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
cxpi11d | ⊢ (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11205 | . . . 4 ⊢ i ∈ ℂ | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → i ∈ ℂ) |
3 | cxpi11d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
4 | cxpi11d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | ine0 11687 | . . . 4 ⊢ i ≠ 0 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → i ≠ 0) |
7 | ine1 41906 | . . . 4 ⊢ i ≠ 1 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → i ≠ 1) |
9 | 2, 3, 4, 6, 8 | cxp112d 41943 | . 2 ⊢ (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))))) |
10 | 2cn 12325 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
11 | picn 26414 | . . . . . . . . . 10 ⊢ π ∈ ℂ | |
12 | 10, 11 | mulcli 11259 | . . . . . . . . 9 ⊢ (2 · π) ∈ ℂ |
13 | 1, 12 | mulcli 11259 | . . . . . . . 8 ⊢ (i · (2 · π)) ∈ ℂ |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (i · (2 · π)) ∈ ℂ) |
15 | zcn 12601 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
16 | logcl 26522 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0) → (log‘i) ∈ ℂ) | |
17 | 1, 5, 16 | mp2an 690 | . . . . . . . 8 ⊢ (log‘i) ∈ ℂ |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (log‘i) ∈ ℂ) |
19 | logccne0 26532 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ i ≠ 1) → (log‘i) ≠ 0) | |
20 | 1, 5, 7, 19 | mp3an 1457 | . . . . . . . 8 ⊢ (log‘i) ≠ 0 |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (log‘i) ≠ 0) |
22 | 14, 15, 18, 21 | div23d 12065 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (((i · (2 · π)) · 𝑛) / (log‘i)) = (((i · (2 · π)) / (log‘i)) · 𝑛)) |
23 | logi 26541 | . . . . . . . . 9 ⊢ (log‘i) = (i · (π / 2)) | |
24 | 23 | oveq2i 7437 | . . . . . . . 8 ⊢ ((i · (2 · π)) / (log‘i)) = ((i · (2 · π)) / (i · (π / 2))) |
25 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (2 · π) ∈ ℂ) |
26 | 2ne0 12354 | . . . . . . . . . . . 12 ⊢ 2 ≠ 0 | |
27 | 11, 10, 26 | divcli 11994 | . . . . . . . . . . 11 ⊢ (π / 2) ∈ ℂ |
28 | 27 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (π / 2) ∈ ℂ) |
29 | 1 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → i ∈ ℂ) |
30 | pine0 41905 | . . . . . . . . . . . 12 ⊢ π ≠ 0 | |
31 | 11, 10, 30, 26 | divne0i 12000 | . . . . . . . . . . 11 ⊢ (π / 2) ≠ 0 |
32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (π / 2) ≠ 0) |
33 | 5 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → i ≠ 0) |
34 | 25, 28, 29, 32, 33 | divcan5d 12054 | . . . . . . . . 9 ⊢ (⊤ → ((i · (2 · π)) / (i · (π / 2))) = ((2 · π) / (π / 2))) |
35 | 34 | mptru 1540 | . . . . . . . 8 ⊢ ((i · (2 · π)) / (i · (π / 2))) = ((2 · π) / (π / 2)) |
36 | 10, 11, 27, 31 | divassi 12008 | . . . . . . . . 9 ⊢ ((2 · π) / (π / 2)) = (2 · (π / (π / 2))) |
37 | 11 | a1i 11 | . . . . . . . . . . . 12 ⊢ (⊤ → π ∈ ℂ) |
38 | 2cnd 12328 | . . . . . . . . . . . 12 ⊢ (⊤ → 2 ∈ ℂ) | |
39 | 30 | a1i 11 | . . . . . . . . . . . 12 ⊢ (⊤ → π ≠ 0) |
40 | 26 | a1i 11 | . . . . . . . . . . . 12 ⊢ (⊤ → 2 ≠ 0) |
41 | 37, 38, 39, 40 | ddcand 12048 | . . . . . . . . . . 11 ⊢ (⊤ → (π / (π / 2)) = 2) |
42 | 41 | mptru 1540 | . . . . . . . . . 10 ⊢ (π / (π / 2)) = 2 |
43 | 42 | oveq2i 7437 | . . . . . . . . 9 ⊢ (2 · (π / (π / 2))) = (2 · 2) |
44 | 2t2e4 12414 | . . . . . . . . 9 ⊢ (2 · 2) = 4 | |
45 | 36, 43, 44 | 3eqtri 2760 | . . . . . . . 8 ⊢ ((2 · π) / (π / 2)) = 4 |
46 | 24, 35, 45 | 3eqtri 2760 | . . . . . . 7 ⊢ ((i · (2 · π)) / (log‘i)) = 4 |
47 | 46 | oveq1i 7436 | . . . . . 6 ⊢ (((i · (2 · π)) / (log‘i)) · 𝑛) = (4 · 𝑛) |
48 | 22, 47 | eqtrdi 2784 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (((i · (2 · π)) · 𝑛) / (log‘i)) = (4 · 𝑛)) |
49 | 48 | oveq2d 7442 | . . . 4 ⊢ (𝑛 ∈ ℤ → (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) = (𝐵 + (4 · 𝑛))) |
50 | 49 | eqeq2d 2739 | . . 3 ⊢ (𝑛 ∈ ℤ → (𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) ↔ 𝐴 = (𝐵 + (4 · 𝑛)))) |
51 | 50 | rexbiia 3089 | . 2 ⊢ (∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛))) |
52 | 9, 51 | bitrdi 286 | 1 ⊢ (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ≠ wne 2937 ∃wrex 3067 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 0cc0 11146 1c1 11147 ici 11148 + caddc 11149 · cmul 11151 / cdiv 11909 2c2 12305 4c4 12307 ℤcz 12596 πcpi 16050 logclog 26508 ↑𝑐ccxp 26509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-fi 9442 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-ioc 13369 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-fac 14273 df-bc 14302 df-hash 14330 df-shft 15054 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-limsup 15455 df-clim 15472 df-rlim 15473 df-sum 15673 df-ef 16051 df-sin 16053 df-cos 16054 df-pi 16056 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-hom 17264 df-cco 17265 df-rest 17411 df-topn 17412 df-0g 17430 df-gsum 17431 df-topgen 17432 df-pt 17433 df-prds 17436 df-xrs 17491 df-qtop 17496 df-imas 17497 df-xps 17499 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-mulg 19031 df-cntz 19275 df-cmn 19744 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-cld 22943 df-ntr 22944 df-cls 22945 df-nei 23022 df-lp 23060 df-perf 23061 df-cn 23151 df-cnp 23152 df-haus 23239 df-tx 23486 df-hmeo 23679 df-fil 23770 df-fm 23862 df-flim 23863 df-flf 23864 df-xms 24246 df-ms 24247 df-tms 24248 df-cncf 24818 df-limc 25815 df-dv 25816 df-log 26510 df-cxp 26511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |