Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cxpi11d Structured version   Visualization version   GIF version

Theorem cxpi11d 41945
Description: i to the powers of 𝐴 and 𝐵 are equal iff 𝐴 and 𝐵 are a multiple of 4 apart. EDITORIAL: This theorem may be revised to a more convenient form. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
cxpi11d.a (𝜑𝐴 ∈ ℂ)
cxpi11d.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
cxpi11d (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛))))
Distinct variable groups:   𝜑,𝑛   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxpi11d
StepHypRef Expression
1 ax-icn 11205 . . . 4 i ∈ ℂ
21a1i 11 . . 3 (𝜑 → i ∈ ℂ)
3 cxpi11d.a . . 3 (𝜑𝐴 ∈ ℂ)
4 cxpi11d.b . . 3 (𝜑𝐵 ∈ ℂ)
5 ine0 11687 . . . 4 i ≠ 0
65a1i 11 . . 3 (𝜑 → i ≠ 0)
7 ine1 41906 . . . 4 i ≠ 1
87a1i 11 . . 3 (𝜑 → i ≠ 1)
92, 3, 4, 6, 8cxp112d 41943 . 2 (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i)))))
10 2cn 12325 . . . . . . . . . 10 2 ∈ ℂ
11 picn 26414 . . . . . . . . . 10 π ∈ ℂ
1210, 11mulcli 11259 . . . . . . . . 9 (2 · π) ∈ ℂ
131, 12mulcli 11259 . . . . . . . 8 (i · (2 · π)) ∈ ℂ
1413a1i 11 . . . . . . 7 (𝑛 ∈ ℤ → (i · (2 · π)) ∈ ℂ)
15 zcn 12601 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
16 logcl 26522 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0) → (log‘i) ∈ ℂ)
171, 5, 16mp2an 690 . . . . . . . 8 (log‘i) ∈ ℂ
1817a1i 11 . . . . . . 7 (𝑛 ∈ ℤ → (log‘i) ∈ ℂ)
19 logccne0 26532 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ i ≠ 1) → (log‘i) ≠ 0)
201, 5, 7, 19mp3an 1457 . . . . . . . 8 (log‘i) ≠ 0
2120a1i 11 . . . . . . 7 (𝑛 ∈ ℤ → (log‘i) ≠ 0)
2214, 15, 18, 21div23d 12065 . . . . . 6 (𝑛 ∈ ℤ → (((i · (2 · π)) · 𝑛) / (log‘i)) = (((i · (2 · π)) / (log‘i)) · 𝑛))
23 logi 26541 . . . . . . . . 9 (log‘i) = (i · (π / 2))
2423oveq2i 7437 . . . . . . . 8 ((i · (2 · π)) / (log‘i)) = ((i · (2 · π)) / (i · (π / 2)))
2512a1i 11 . . . . . . . . . 10 (⊤ → (2 · π) ∈ ℂ)
26 2ne0 12354 . . . . . . . . . . . 12 2 ≠ 0
2711, 10, 26divcli 11994 . . . . . . . . . . 11 (π / 2) ∈ ℂ
2827a1i 11 . . . . . . . . . 10 (⊤ → (π / 2) ∈ ℂ)
291a1i 11 . . . . . . . . . 10 (⊤ → i ∈ ℂ)
30 pine0 41905 . . . . . . . . . . . 12 π ≠ 0
3111, 10, 30, 26divne0i 12000 . . . . . . . . . . 11 (π / 2) ≠ 0
3231a1i 11 . . . . . . . . . 10 (⊤ → (π / 2) ≠ 0)
335a1i 11 . . . . . . . . . 10 (⊤ → i ≠ 0)
3425, 28, 29, 32, 33divcan5d 12054 . . . . . . . . 9 (⊤ → ((i · (2 · π)) / (i · (π / 2))) = ((2 · π) / (π / 2)))
3534mptru 1540 . . . . . . . 8 ((i · (2 · π)) / (i · (π / 2))) = ((2 · π) / (π / 2))
3610, 11, 27, 31divassi 12008 . . . . . . . . 9 ((2 · π) / (π / 2)) = (2 · (π / (π / 2)))
3711a1i 11 . . . . . . . . . . . 12 (⊤ → π ∈ ℂ)
38 2cnd 12328 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℂ)
3930a1i 11 . . . . . . . . . . . 12 (⊤ → π ≠ 0)
4026a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ≠ 0)
4137, 38, 39, 40ddcand 12048 . . . . . . . . . . 11 (⊤ → (π / (π / 2)) = 2)
4241mptru 1540 . . . . . . . . . 10 (π / (π / 2)) = 2
4342oveq2i 7437 . . . . . . . . 9 (2 · (π / (π / 2))) = (2 · 2)
44 2t2e4 12414 . . . . . . . . 9 (2 · 2) = 4
4536, 43, 443eqtri 2760 . . . . . . . 8 ((2 · π) / (π / 2)) = 4
4624, 35, 453eqtri 2760 . . . . . . 7 ((i · (2 · π)) / (log‘i)) = 4
4746oveq1i 7436 . . . . . 6 (((i · (2 · π)) / (log‘i)) · 𝑛) = (4 · 𝑛)
4822, 47eqtrdi 2784 . . . . 5 (𝑛 ∈ ℤ → (((i · (2 · π)) · 𝑛) / (log‘i)) = (4 · 𝑛))
4948oveq2d 7442 . . . 4 (𝑛 ∈ ℤ → (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) = (𝐵 + (4 · 𝑛)))
5049eqeq2d 2739 . . 3 (𝑛 ∈ ℤ → (𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) ↔ 𝐴 = (𝐵 + (4 · 𝑛))))
5150rexbiia 3089 . 2 (∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (((i · (2 · π)) · 𝑛) / (log‘i))) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛)))
529, 51bitrdi 286 1 (𝜑 → ((i↑𝑐𝐴) = (i↑𝑐𝐵) ↔ ∃𝑛 ∈ ℤ 𝐴 = (𝐵 + (4 · 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wtru 1534  wcel 2098  wne 2937  wrex 3067  cfv 6553  (class class class)co 7426  cc 11144  0cc0 11146  1c1 11147  ici 11148   + caddc 11149   · cmul 11151   / cdiv 11909  2c2 12305  4c4 12307  cz 12596  πcpi 16050  logclog 26508  𝑐ccxp 26509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-sin 16053  df-cos 16054  df-pi 16056  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24818  df-limc 25815  df-dv 25816  df-log 26510  df-cxp 26511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator