![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recosf1o | Structured version Visualization version GIF version |
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
recosf1o | ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosf 16064 | . . . . . 6 ⊢ cos:ℂ⟶ℂ | |
2 | ffn 6714 | . . . . . 6 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ cos Fn ℂ |
4 | 0re 11212 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
5 | pire 25959 | . . . . . . 7 ⊢ π ∈ ℝ | |
6 | iccssre 13402 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ) | |
7 | 4, 5, 6 | mp2an 690 | . . . . . 6 ⊢ (0[,]π) ⊆ ℝ |
8 | ax-resscn 11163 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
9 | 7, 8 | sstri 3990 | . . . . 5 ⊢ (0[,]π) ⊆ ℂ |
10 | fnssres 6670 | . . . . 5 ⊢ ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π)) | |
11 | 3, 9, 10 | mp2an 690 | . . . 4 ⊢ (cos ↾ (0[,]π)) Fn (0[,]π) |
12 | fvres 6907 | . . . . . 6 ⊢ (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) = (cos‘𝑥)) | |
13 | 7 | sseli 3977 | . . . . . . 7 ⊢ (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ) |
14 | cosbnd2 16122 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (cos‘𝑥) ∈ (-1[,]1)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ (-1[,]1)) |
16 | 12, 15 | eqeltrd 2833 | . . . . 5 ⊢ (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1)) |
17 | 16 | rgen 3063 | . . . 4 ⊢ ∀𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1) |
18 | ffnfv 7114 | . . . 4 ⊢ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ↔ ((cos ↾ (0[,]π)) Fn (0[,]π) ∧ ∀𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1))) | |
19 | 11, 17, 18 | mpbir2an 709 | . . 3 ⊢ (cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) |
20 | fvres 6907 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑦) = (cos‘𝑦)) | |
21 | 12, 20 | eqeqan12d 2746 | . . . . 5 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦))) |
22 | cos11 26033 | . . . . . 6 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦))) | |
23 | 22 | biimprd 247 | . . . . 5 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦)) |
24 | 21, 23 | sylbid 239 | . . . 4 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦)) |
25 | 24 | rgen2 3197 | . . 3 ⊢ ∀𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦) |
26 | dff13 7250 | . . 3 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦))) | |
27 | 19, 25, 26 | mpbir2an 709 | . 2 ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) |
28 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 0 ∈ ℝ) |
29 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → π ∈ ℝ) |
30 | neg1rr 12323 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
31 | 1re 11210 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
32 | 30, 31 | elicc2i 13386 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) ↔ (𝑥 ∈ ℝ ∧ -1 ≤ 𝑥 ∧ 𝑥 ≤ 1)) |
33 | 32 | simp1bi 1145 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ∈ ℝ) |
34 | pipos 25961 | . . . . . . 7 ⊢ 0 < π | |
35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 0 < π) |
36 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → (0[,]π) ⊆ ℂ) |
37 | coscn 25948 | . . . . . . 7 ⊢ cos ∈ (ℂ–cn→ℂ) | |
38 | 37 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → cos ∈ (ℂ–cn→ℂ)) |
39 | 7 | sseli 3977 | . . . . . . . 8 ⊢ (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ) |
40 | 39 | recoscld 16083 | . . . . . . 7 ⊢ (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ) |
41 | 40 | adantl 482 | . . . . . 6 ⊢ ((𝑥 ∈ (-1[,]1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ) |
42 | cospi 25973 | . . . . . . . 8 ⊢ (cos‘π) = -1 | |
43 | 32 | simp2bi 1146 | . . . . . . . 8 ⊢ (𝑥 ∈ (-1[,]1) → -1 ≤ 𝑥) |
44 | 42, 43 | eqbrtrid 5182 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) → (cos‘π) ≤ 𝑥) |
45 | 32 | simp3bi 1147 | . . . . . . . 8 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ≤ 1) |
46 | cos0 16089 | . . . . . . . 8 ⊢ (cos‘0) = 1 | |
47 | 45, 46 | breqtrrdi 5189 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ≤ (cos‘0)) |
48 | 44, 47 | jca 512 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → ((cos‘π) ≤ 𝑥 ∧ 𝑥 ≤ (cos‘0))) |
49 | 28, 29, 33, 35, 36, 38, 41, 48 | ivthle2 24965 | . . . . 5 ⊢ (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥) |
50 | eqcom 2739 | . . . . . . 7 ⊢ (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ((cos ↾ (0[,]π))‘𝑦) = 𝑥) | |
51 | 20 | eqeq1d 2734 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]π) → (((cos ↾ (0[,]π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥)) |
52 | 50, 51 | bitrid 282 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]π) → (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑦) = 𝑥)) |
53 | 52 | rexbiia 3092 | . . . . 5 ⊢ (∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥) |
54 | 49, 53 | sylibr 233 | . . . 4 ⊢ (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦)) |
55 | 54 | rgen 3063 | . . 3 ⊢ ∀𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦) |
56 | dffo3 7100 | . . 3 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦))) | |
57 | 19, 55, 56 | mpbir2an 709 | . 2 ⊢ (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1) |
58 | df-f1o 6547 | . 2 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ∧ (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1))) | |
59 | 27, 57, 58 | mpbir2an 709 | 1 ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3947 class class class wbr 5147 ↾ cres 5677 Fn wfn 6535 ⟶wf 6536 –1-1→wf1 6537 –onto→wfo 6538 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 < clt 11244 ≤ cle 11245 -cneg 11441 [,]cicc 13323 cosccos 16004 πcpi 16006 –cn→ccncf 24383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-limc 25374 df-dv 25375 |
This theorem is referenced by: resinf1o 26036 |
Copyright terms: Public domain | W3C validator |