![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recosf1o | Structured version Visualization version GIF version |
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
recosf1o | ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosf 16075 | . . . . . 6 ⊢ cos:ℂ⟶ℂ | |
2 | ffn 6711 | . . . . . 6 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ cos Fn ℂ |
4 | 0re 11220 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
5 | pire 26348 | . . . . . . 7 ⊢ π ∈ ℝ | |
6 | iccssre 13412 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ) | |
7 | 4, 5, 6 | mp2an 689 | . . . . . 6 ⊢ (0[,]π) ⊆ ℝ |
8 | ax-resscn 11169 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
9 | 7, 8 | sstri 3986 | . . . . 5 ⊢ (0[,]π) ⊆ ℂ |
10 | fnssres 6667 | . . . . 5 ⊢ ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π)) | |
11 | 3, 9, 10 | mp2an 689 | . . . 4 ⊢ (cos ↾ (0[,]π)) Fn (0[,]π) |
12 | fvres 6904 | . . . . . 6 ⊢ (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) = (cos‘𝑥)) | |
13 | 7 | sseli 3973 | . . . . . . 7 ⊢ (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ) |
14 | cosbnd2 16133 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (cos‘𝑥) ∈ (-1[,]1)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ (-1[,]1)) |
16 | 12, 15 | eqeltrd 2827 | . . . . 5 ⊢ (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1)) |
17 | 16 | rgen 3057 | . . . 4 ⊢ ∀𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1) |
18 | ffnfv 7114 | . . . 4 ⊢ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ↔ ((cos ↾ (0[,]π)) Fn (0[,]π) ∧ ∀𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1))) | |
19 | 11, 17, 18 | mpbir2an 708 | . . 3 ⊢ (cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) |
20 | fvres 6904 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑦) = (cos‘𝑦)) | |
21 | 12, 20 | eqeqan12d 2740 | . . . . 5 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦))) |
22 | cos11 26422 | . . . . . 6 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦))) | |
23 | 22 | biimprd 247 | . . . . 5 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦)) |
24 | 21, 23 | sylbid 239 | . . . 4 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦)) |
25 | 24 | rgen2 3191 | . . 3 ⊢ ∀𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦) |
26 | dff13 7250 | . . 3 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦))) | |
27 | 19, 25, 26 | mpbir2an 708 | . 2 ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) |
28 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 0 ∈ ℝ) |
29 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → π ∈ ℝ) |
30 | neg1rr 12331 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
31 | 1re 11218 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
32 | 30, 31 | elicc2i 13396 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) ↔ (𝑥 ∈ ℝ ∧ -1 ≤ 𝑥 ∧ 𝑥 ≤ 1)) |
33 | 32 | simp1bi 1142 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ∈ ℝ) |
34 | pipos 26350 | . . . . . . 7 ⊢ 0 < π | |
35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 0 < π) |
36 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → (0[,]π) ⊆ ℂ) |
37 | coscn 26337 | . . . . . . 7 ⊢ cos ∈ (ℂ–cn→ℂ) | |
38 | 37 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → cos ∈ (ℂ–cn→ℂ)) |
39 | 7 | sseli 3973 | . . . . . . . 8 ⊢ (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ) |
40 | 39 | recoscld 16094 | . . . . . . 7 ⊢ (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ) |
41 | 40 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (-1[,]1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ) |
42 | cospi 26362 | . . . . . . . 8 ⊢ (cos‘π) = -1 | |
43 | 32 | simp2bi 1143 | . . . . . . . 8 ⊢ (𝑥 ∈ (-1[,]1) → -1 ≤ 𝑥) |
44 | 42, 43 | eqbrtrid 5176 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) → (cos‘π) ≤ 𝑥) |
45 | 32 | simp3bi 1144 | . . . . . . . 8 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ≤ 1) |
46 | cos0 16100 | . . . . . . . 8 ⊢ (cos‘0) = 1 | |
47 | 45, 46 | breqtrrdi 5183 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ≤ (cos‘0)) |
48 | 44, 47 | jca 511 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → ((cos‘π) ≤ 𝑥 ∧ 𝑥 ≤ (cos‘0))) |
49 | 28, 29, 33, 35, 36, 38, 41, 48 | ivthle2 25341 | . . . . 5 ⊢ (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥) |
50 | eqcom 2733 | . . . . . . 7 ⊢ (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ((cos ↾ (0[,]π))‘𝑦) = 𝑥) | |
51 | 20 | eqeq1d 2728 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]π) → (((cos ↾ (0[,]π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥)) |
52 | 50, 51 | bitrid 283 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]π) → (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑦) = 𝑥)) |
53 | 52 | rexbiia 3086 | . . . . 5 ⊢ (∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥) |
54 | 49, 53 | sylibr 233 | . . . 4 ⊢ (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦)) |
55 | 54 | rgen 3057 | . . 3 ⊢ ∀𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦) |
56 | dffo3 7097 | . . 3 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦))) | |
57 | 19, 55, 56 | mpbir2an 708 | . 2 ⊢ (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1) |
58 | df-f1o 6544 | . 2 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ∧ (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1))) | |
59 | 27, 57, 58 | mpbir2an 708 | 1 ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 class class class wbr 5141 ↾ cres 5671 Fn wfn 6532 ⟶wf 6533 –1-1→wf1 6534 –onto→wfo 6535 –1-1-onto→wf1o 6536 ‘cfv 6537 (class class class)co 7405 ℂcc 11110 ℝcr 11111 0cc0 11112 1c1 11113 < clt 11252 ≤ cle 11253 -cneg 11449 [,]cicc 13333 cosccos 16014 πcpi 16016 –cn→ccncf 24751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ioc 13335 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-ef 16017 df-sin 16019 df-cos 16020 df-pi 16022 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-rest 17377 df-topn 17378 df-0g 17396 df-gsum 17397 df-topgen 17398 df-pt 17399 df-prds 17402 df-xrs 17457 df-qtop 17462 df-imas 17463 df-xps 17465 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-mulg 18996 df-cntz 19233 df-cmn 19702 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-cld 22878 df-ntr 22879 df-cls 22880 df-nei 22957 df-lp 22995 df-perf 22996 df-cn 23086 df-cnp 23087 df-haus 23174 df-tx 23421 df-hmeo 23614 df-fil 23705 df-fm 23797 df-flim 23798 df-flf 23799 df-xms 24181 df-ms 24182 df-tms 24183 df-cncf 24753 df-limc 25750 df-dv 25751 |
This theorem is referenced by: resinf1o 26425 |
Copyright terms: Public domain | W3C validator |