| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recosf1o | Structured version Visualization version GIF version | ||
| Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
| Ref | Expression |
|---|---|
| recosf1o | ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosf 16141 | . . . . . 6 ⊢ cos:ℂ⟶ℂ | |
| 2 | ffn 6705 | . . . . . 6 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ cos Fn ℂ |
| 4 | 0re 11235 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 5 | pire 26416 | . . . . . . 7 ⊢ π ∈ ℝ | |
| 6 | iccssre 13444 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . . . 6 ⊢ (0[,]π) ⊆ ℝ |
| 8 | ax-resscn 11184 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 9 | 7, 8 | sstri 3968 | . . . . 5 ⊢ (0[,]π) ⊆ ℂ |
| 10 | fnssres 6660 | . . . . 5 ⊢ ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π)) | |
| 11 | 3, 9, 10 | mp2an 692 | . . . 4 ⊢ (cos ↾ (0[,]π)) Fn (0[,]π) |
| 12 | fvres 6894 | . . . . . 6 ⊢ (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) = (cos‘𝑥)) | |
| 13 | 7 | sseli 3954 | . . . . . . 7 ⊢ (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ) |
| 14 | cosbnd2 16199 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (cos‘𝑥) ∈ (-1[,]1)) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ (-1[,]1)) |
| 16 | 12, 15 | eqeltrd 2834 | . . . . 5 ⊢ (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1)) |
| 17 | 16 | rgen 3053 | . . . 4 ⊢ ∀𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1) |
| 18 | ffnfv 7108 | . . . 4 ⊢ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ↔ ((cos ↾ (0[,]π)) Fn (0[,]π) ∧ ∀𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1))) | |
| 19 | 11, 17, 18 | mpbir2an 711 | . . 3 ⊢ (cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) |
| 20 | fvres 6894 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑦) = (cos‘𝑦)) | |
| 21 | 12, 20 | eqeqan12d 2749 | . . . . 5 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦))) |
| 22 | cos11 26492 | . . . . . 6 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦))) | |
| 23 | 22 | biimprd 248 | . . . . 5 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦)) |
| 24 | 21, 23 | sylbid 240 | . . . 4 ⊢ ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦)) |
| 25 | 24 | rgen2 3184 | . . 3 ⊢ ∀𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦) |
| 26 | dff13 7246 | . . 3 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦))) | |
| 27 | 19, 25, 26 | mpbir2an 711 | . 2 ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) |
| 28 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 0 ∈ ℝ) |
| 29 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → π ∈ ℝ) |
| 30 | neg1rr 12353 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
| 31 | 1re 11233 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 32 | 30, 31 | elicc2i 13427 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) ↔ (𝑥 ∈ ℝ ∧ -1 ≤ 𝑥 ∧ 𝑥 ≤ 1)) |
| 33 | 32 | simp1bi 1145 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ∈ ℝ) |
| 34 | pipos 26418 | . . . . . . 7 ⊢ 0 < π | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → 0 < π) |
| 36 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → (0[,]π) ⊆ ℂ) |
| 37 | coscn 26405 | . . . . . . 7 ⊢ cos ∈ (ℂ–cn→ℂ) | |
| 38 | 37 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → cos ∈ (ℂ–cn→ℂ)) |
| 39 | 7 | sseli 3954 | . . . . . . . 8 ⊢ (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ) |
| 40 | 39 | recoscld 16160 | . . . . . . 7 ⊢ (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ) |
| 41 | 40 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (-1[,]1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ) |
| 42 | cospi 26431 | . . . . . . . 8 ⊢ (cos‘π) = -1 | |
| 43 | 32 | simp2bi 1146 | . . . . . . . 8 ⊢ (𝑥 ∈ (-1[,]1) → -1 ≤ 𝑥) |
| 44 | 42, 43 | eqbrtrid 5154 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) → (cos‘π) ≤ 𝑥) |
| 45 | 32 | simp3bi 1147 | . . . . . . . 8 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ≤ 1) |
| 46 | cos0 16166 | . . . . . . . 8 ⊢ (cos‘0) = 1 | |
| 47 | 45, 46 | breqtrrdi 5161 | . . . . . . 7 ⊢ (𝑥 ∈ (-1[,]1) → 𝑥 ≤ (cos‘0)) |
| 48 | 44, 47 | jca 511 | . . . . . 6 ⊢ (𝑥 ∈ (-1[,]1) → ((cos‘π) ≤ 𝑥 ∧ 𝑥 ≤ (cos‘0))) |
| 49 | 28, 29, 33, 35, 36, 38, 41, 48 | ivthle2 25408 | . . . . 5 ⊢ (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥) |
| 50 | eqcom 2742 | . . . . . . 7 ⊢ (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ((cos ↾ (0[,]π))‘𝑦) = 𝑥) | |
| 51 | 20 | eqeq1d 2737 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]π) → (((cos ↾ (0[,]π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥)) |
| 52 | 50, 51 | bitrid 283 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]π) → (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑦) = 𝑥)) |
| 53 | 52 | rexbiia 3081 | . . . . 5 ⊢ (∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥) |
| 54 | 49, 53 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦)) |
| 55 | 54 | rgen 3053 | . . 3 ⊢ ∀𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦) |
| 56 | dffo3 7091 | . . 3 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦))) | |
| 57 | 19, 55, 56 | mpbir2an 711 | . 2 ⊢ (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1) |
| 58 | df-f1o 6537 | . 2 ⊢ ((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ∧ (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1))) | |
| 59 | 27, 57, 58 | mpbir2an 711 | 1 ⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 class class class wbr 5119 ↾ cres 5656 Fn wfn 6525 ⟶wf 6526 –1-1→wf1 6527 –onto→wfo 6528 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 < clt 11267 ≤ cle 11268 -cneg 11465 [,]cicc 13363 cosccos 16078 πcpi 16080 –cn→ccncf 24818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-shft 15084 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-ef 16081 df-sin 16083 df-cos 16084 df-pi 16086 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-limc 25817 df-dv 25818 |
| This theorem is referenced by: resinf1o 26495 |
| Copyright terms: Public domain | W3C validator |