MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recosf1o Structured version   Visualization version   GIF version

Theorem recosf1o 26444
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
recosf1o (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)

Proof of Theorem recosf1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 16093 . . . . . 6 cos:ℂ⟶ℂ
2 ffn 6688 . . . . . 6 (cos:ℂ⟶ℂ → cos Fn ℂ)
31, 2ax-mp 5 . . . . 5 cos Fn ℂ
4 0re 11176 . . . . . . 7 0 ∈ ℝ
5 pire 26366 . . . . . . 7 π ∈ ℝ
6 iccssre 13390 . . . . . . 7 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
74, 5, 6mp2an 692 . . . . . 6 (0[,]π) ⊆ ℝ
8 ax-resscn 11125 . . . . . 6 ℝ ⊆ ℂ
97, 8sstri 3956 . . . . 5 (0[,]π) ⊆ ℂ
10 fnssres 6641 . . . . 5 ((cos Fn ℂ ∧ (0[,]π) ⊆ ℂ) → (cos ↾ (0[,]π)) Fn (0[,]π))
113, 9, 10mp2an 692 . . . 4 (cos ↾ (0[,]π)) Fn (0[,]π)
12 fvres 6877 . . . . . 6 (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) = (cos‘𝑥))
137sseli 3942 . . . . . . 7 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℝ)
14 cosbnd2 16151 . . . . . . 7 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ (-1[,]1))
1513, 14syl 17 . . . . . 6 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ (-1[,]1))
1612, 15eqeltrd 2828 . . . . 5 (𝑥 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1))
1716rgen 3046 . . . 4 𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1)
18 ffnfv 7091 . . . 4 ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ↔ ((cos ↾ (0[,]π)) Fn (0[,]π) ∧ ∀𝑥 ∈ (0[,]π)((cos ↾ (0[,]π))‘𝑥) ∈ (-1[,]1)))
1911, 17, 18mpbir2an 711 . . 3 (cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1)
20 fvres 6877 . . . . . 6 (𝑦 ∈ (0[,]π) → ((cos ↾ (0[,]π))‘𝑦) = (cos‘𝑦))
2112, 20eqeqan12d 2743 . . . . 5 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦)))
22 cos11 26442 . . . . . 6 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦)))
2322biimprd 248 . . . . 5 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2421, 23sylbid 240 . . . 4 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦))
2524rgen2 3177 . . 3 𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦)
26 dff13 7229 . . 3 ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (0[,]π)∀𝑦 ∈ (0[,]π)(((cos ↾ (0[,]π))‘𝑥) = ((cos ↾ (0[,]π))‘𝑦) → 𝑥 = 𝑦)))
2719, 25, 26mpbir2an 711 . 2 (cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1)
284a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → 0 ∈ ℝ)
295a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → π ∈ ℝ)
30 neg1rr 12172 . . . . . . . 8 -1 ∈ ℝ
31 1re 11174 . . . . . . . 8 1 ∈ ℝ
3230, 31elicc2i 13373 . . . . . . 7 (𝑥 ∈ (-1[,]1) ↔ (𝑥 ∈ ℝ ∧ -1 ≤ 𝑥𝑥 ≤ 1))
3332simp1bi 1145 . . . . . 6 (𝑥 ∈ (-1[,]1) → 𝑥 ∈ ℝ)
34 pipos 26368 . . . . . . 7 0 < π
3534a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → 0 < π)
369a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → (0[,]π) ⊆ ℂ)
37 coscn 26355 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
3837a1i 11 . . . . . 6 (𝑥 ∈ (-1[,]1) → cos ∈ (ℂ–cn→ℂ))
397sseli 3942 . . . . . . . 8 (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ)
4039recoscld 16112 . . . . . . 7 (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ)
4140adantl 481 . . . . . 6 ((𝑥 ∈ (-1[,]1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ)
42 cospi 26381 . . . . . . . 8 (cos‘π) = -1
4332simp2bi 1146 . . . . . . . 8 (𝑥 ∈ (-1[,]1) → -1 ≤ 𝑥)
4442, 43eqbrtrid 5142 . . . . . . 7 (𝑥 ∈ (-1[,]1) → (cos‘π) ≤ 𝑥)
4532simp3bi 1147 . . . . . . . 8 (𝑥 ∈ (-1[,]1) → 𝑥 ≤ 1)
46 cos0 16118 . . . . . . . 8 (cos‘0) = 1
4745, 46breqtrrdi 5149 . . . . . . 7 (𝑥 ∈ (-1[,]1) → 𝑥 ≤ (cos‘0))
4844, 47jca 511 . . . . . 6 (𝑥 ∈ (-1[,]1) → ((cos‘π) ≤ 𝑥𝑥 ≤ (cos‘0)))
4928, 29, 33, 35, 36, 38, 41, 48ivthle2 25358 . . . . 5 (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥)
50 eqcom 2736 . . . . . . 7 (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ((cos ↾ (0[,]π))‘𝑦) = 𝑥)
5120eqeq1d 2731 . . . . . . 7 (𝑦 ∈ (0[,]π) → (((cos ↾ (0[,]π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥))
5250, 51bitrid 283 . . . . . 6 (𝑦 ∈ (0[,]π) → (𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ (cos‘𝑦) = 𝑥))
5352rexbiia 3074 . . . . 5 (∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦) ↔ ∃𝑦 ∈ (0[,]π)(cos‘𝑦) = 𝑥)
5449, 53sylibr 234 . . . 4 (𝑥 ∈ (-1[,]1) → ∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦))
5554rgen 3046 . . 3 𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦)
56 dffo3 7074 . . 3 ((cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)⟶(-1[,]1) ∧ ∀𝑥 ∈ (-1[,]1)∃𝑦 ∈ (0[,]π)𝑥 = ((cos ↾ (0[,]π))‘𝑦)))
5719, 55, 56mpbir2an 711 . 2 (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1)
58 df-f1o 6518 . 2 ((cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) ↔ ((cos ↾ (0[,]π)):(0[,]π)–1-1→(-1[,]1) ∧ (cos ↾ (0[,]π)):(0[,]π)–onto→(-1[,]1)))
5927, 57, 58mpbir2an 711 1 (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  cres 5640   Fn wfn 6506  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209  -cneg 11406  [,]cicc 13309  cosccos 16030  πcpi 16032  cnccncf 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  resinf1o  26445
  Copyright terms: Public domain W3C validator