| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngringbdlem2 | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngringbd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngringbd.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngringbd.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngringbd.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngringbd.q | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| Ref | Expression |
|---|---|
| rngringbdlem2 | ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑄 ∈ Ring) | |
| 3 | rngringbd.u | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝐽 ∈ Ring) |
| 5 | 1, 2, 4 | xpsringd 20251 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → (𝑄 ×s 𝐽) ∈ Ring) |
| 6 | rngringbd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑅 ∈ Rng) |
| 8 | rngringbd.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 10 | rngringbd.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 11 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 12 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | eqid 2731 | . . . 4 ⊢ (1r‘𝐽) = (1r‘𝐽) | |
| 14 | eqid 2731 | . . . 4 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 15 | rngringbd.q | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 16 | eqid 2731 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 17 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) = (𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) | |
| 18 | 7, 9, 10, 4, 11, 12, 13, 14, 15, 16, 1, 17 | rngqiprngim 21242 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → (𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽))) |
| 19 | rngimcnv 20375 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → ◡(𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) | |
| 20 | 18, 19 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → ◡(𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) |
| 21 | rngisomring 20386 | . 2 ⊢ (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ◡(𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → 𝑅 ∈ Ring) | |
| 22 | 5, 7, 20, 21 | syl3anc 1373 | 1 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 ↦ cmpt 5172 ◡ccnv 5615 ‘cfv 6481 (class class class)co 7346 [cec 8620 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 /s cqus 17409 ×s cxps 17410 ~QG cqg 19035 Rngcrng 20071 1rcur 20100 Ringcrg 20152 RngIso crngim 20354 2Idealc2idl 21187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-imas 17412 df-qus 17413 df-xps 17414 df-mgm 18548 df-mgmhm 18600 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19126 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-rnghm 20355 df-rngim 20356 df-subrng 20462 df-lss 20866 df-sra 21108 df-rgmod 21109 df-lidl 21146 df-2idl 21188 |
| This theorem is referenced by: rngringbd 21246 ring2idlqusb 21248 ring2idlqus1 21257 |
| Copyright terms: Public domain | W3C validator |