![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngringbdlem2 | Structured version Visualization version GIF version |
Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025.) |
Ref | Expression |
---|---|
rngringbd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngringbd.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rngringbd.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rngringbd.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rngringbd.q | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
Ref | Expression |
---|---|
rngringbdlem2 | ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽) | |
2 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑄 ∈ Ring) | |
3 | rngringbd.u | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
4 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝐽 ∈ Ring) |
5 | 1, 2, 4 | xpsringd 20311 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → (𝑄 ×s 𝐽) ∈ Ring) |
6 | rngringbd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
7 | 6 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑅 ∈ Rng) |
8 | rngringbd.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
9 | 8 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝐼 ∈ (2Ideal‘𝑅)) |
10 | rngringbd.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
11 | eqid 2726 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
12 | eqid 2726 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
13 | eqid 2726 | . . . 4 ⊢ (1r‘𝐽) = (1r‘𝐽) | |
14 | eqid 2726 | . . . 4 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
15 | rngringbd.q | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
16 | eqid 2726 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
17 | eqid 2726 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) = (𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) | |
18 | 7, 9, 10, 4, 11, 12, 13, 14, 15, 16, 1, 17 | rngqiprngim 21293 | . . 3 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → (𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽))) |
19 | rngimcnv 20438 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → ◡(𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) | |
20 | 18, 19 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → ◡(𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) |
21 | rngisomring 20449 | . 2 ⊢ (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ◡(𝑥 ∈ (Base‘𝑅) ↦ 〈[𝑥](𝑅 ~QG 𝐼), ((1r‘𝐽)(.r‘𝑅)𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → 𝑅 ∈ Ring) | |
22 | 5, 7, 20, 21 | syl3anc 1368 | 1 ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 〈cop 4639 ↦ cmpt 5236 ◡ccnv 5681 ‘cfv 6554 (class class class)co 7424 [cec 8732 Basecbs 17213 ↾s cress 17242 .rcmulr 17267 /s cqus 17520 ×s cxps 17521 ~QG cqg 19116 Rngcrng 20135 1rcur 20164 Ringcrg 20216 RngIso crngim 20417 2Idealc2idl 21238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-ec 8736 df-qs 8740 df-map 8857 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-hom 17290 df-cco 17291 df-0g 17456 df-prds 17462 df-imas 17523 df-qus 17524 df-xps 17525 df-mgm 18633 df-mgmhm 18685 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-nsg 19118 df-eqg 19119 df-ghm 19207 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-rnghm 20418 df-rngim 20419 df-subrng 20528 df-lss 20909 df-sra 21151 df-rgmod 21152 df-lidl 21197 df-2idl 21239 |
This theorem is referenced by: rngringbd 21297 ring2idlqusb 21299 ring2idlqus1 21308 |
Copyright terms: Public domain | W3C validator |