![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngringbdlem2 | Structured version Visualization version GIF version |
Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025.) |
Ref | Expression |
---|---|
rngringbd.r | β’ (π β π β Rng) |
rngringbd.i | β’ (π β πΌ β (2Idealβπ )) |
rngringbd.j | β’ π½ = (π βΎs πΌ) |
rngringbd.u | β’ (π β π½ β Ring) |
rngringbd.q | β’ π = (π /s (π ~QG πΌ)) |
Ref | Expression |
---|---|
rngringbdlem2 | β’ ((π β§ π β Ring) β π β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (π Γs π½) = (π Γs π½) | |
2 | simpr 485 | . . 3 β’ ((π β§ π β Ring) β π β Ring) | |
3 | rngringbd.u | . . . 4 β’ (π β π½ β Ring) | |
4 | 3 | adantr 481 | . . 3 β’ ((π β§ π β Ring) β π½ β Ring) |
5 | 1, 2, 4 | xpsringd 20138 | . 2 β’ ((π β§ π β Ring) β (π Γs π½) β Ring) |
6 | rngringbd.r | . . 3 β’ (π β π β Rng) | |
7 | 6 | adantr 481 | . 2 β’ ((π β§ π β Ring) β π β Rng) |
8 | rngringbd.i | . . . . 5 β’ (π β πΌ β (2Idealβπ )) | |
9 | 8 | adantr 481 | . . . 4 β’ ((π β§ π β Ring) β πΌ β (2Idealβπ )) |
10 | rngringbd.j | . . . 4 β’ π½ = (π βΎs πΌ) | |
11 | eqid 2732 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
12 | eqid 2732 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
13 | eqid 2732 | . . . 4 β’ (1rβπ½) = (1rβπ½) | |
14 | eqid 2732 | . . . 4 β’ (π ~QG πΌ) = (π ~QG πΌ) | |
15 | rngringbd.q | . . . 4 β’ π = (π /s (π ~QG πΌ)) | |
16 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
17 | eqid 2732 | . . . 4 β’ (π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) = (π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) | |
18 | 7, 9, 10, 4, 11, 12, 13, 14, 15, 16, 1, 17 | rngqiprngim 46769 | . . 3 β’ ((π β§ π β Ring) β (π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β (π RngIsom (π Γs π½))) |
19 | rngimcnv 46690 | . . 3 β’ ((π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β (π RngIsom (π Γs π½)) β β‘(π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β ((π Γs π½) RngIsom π )) | |
20 | 18, 19 | syl 17 | . 2 β’ ((π β§ π β Ring) β β‘(π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β ((π Γs π½) RngIsom π )) |
21 | rngisomring 46704 | . 2 β’ (((π Γs π½) β Ring β§ π β Rng β§ β‘(π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β ((π Γs π½) RngIsom π )) β π β Ring) | |
22 | 5, 7, 20, 21 | syl3anc 1371 | 1 β’ ((π β§ π β Ring) β π β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¨cop 4633 β¦ cmpt 5230 β‘ccnv 5674 βcfv 6540 (class class class)co 7405 [cec 8697 Basecbs 17140 βΎs cress 17169 .rcmulr 17194 /s cqus 17447 Γs cxps 17448 ~QG cqg 18996 1rcur 19998 Ringcrg 20049 2Idealc2idl 20848 Rngcrng 46634 RngIsom crngs 46669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-imas 17450 df-qus 17451 df-xps 17452 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-nsg 18998 df-eqg 18999 df-ghm 19084 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-lss 20535 df-sra 20777 df-rgmod 20778 df-lidl 20779 df-2idl 20849 df-mgmhm 46535 df-rng 46635 df-rnghomo 46670 df-rngisom 46671 df-subrng 46709 |
This theorem is referenced by: rngringbd 46773 ring2idlqusb 46775 |
Copyright terms: Public domain | W3C validator |