![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngringbdlem2 | Structured version Visualization version GIF version |
Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025.) |
Ref | Expression |
---|---|
rngringbd.r | β’ (π β π β Rng) |
rngringbd.i | β’ (π β πΌ β (2Idealβπ )) |
rngringbd.j | β’ π½ = (π βΎs πΌ) |
rngringbd.u | β’ (π β π½ β Ring) |
rngringbd.q | β’ π = (π /s (π ~QG πΌ)) |
Ref | Expression |
---|---|
rngringbdlem2 | β’ ((π β§ π β Ring) β π β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 β’ (π Γs π½) = (π Γs π½) | |
2 | simpr 483 | . . 3 β’ ((π β§ π β Ring) β π β Ring) | |
3 | rngringbd.u | . . . 4 β’ (π β π½ β Ring) | |
4 | 3 | adantr 479 | . . 3 β’ ((π β§ π β Ring) β π½ β Ring) |
5 | 1, 2, 4 | xpsringd 20267 | . 2 β’ ((π β§ π β Ring) β (π Γs π½) β Ring) |
6 | rngringbd.r | . . 3 β’ (π β π β Rng) | |
7 | 6 | adantr 479 | . 2 β’ ((π β§ π β Ring) β π β Rng) |
8 | rngringbd.i | . . . . 5 β’ (π β πΌ β (2Idealβπ )) | |
9 | 8 | adantr 479 | . . . 4 β’ ((π β§ π β Ring) β πΌ β (2Idealβπ )) |
10 | rngringbd.j | . . . 4 β’ π½ = (π βΎs πΌ) | |
11 | eqid 2725 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
12 | eqid 2725 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
13 | eqid 2725 | . . . 4 β’ (1rβπ½) = (1rβπ½) | |
14 | eqid 2725 | . . . 4 β’ (π ~QG πΌ) = (π ~QG πΌ) | |
15 | rngringbd.q | . . . 4 β’ π = (π /s (π ~QG πΌ)) | |
16 | eqid 2725 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
17 | eqid 2725 | . . . 4 β’ (π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) = (π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) | |
18 | 7, 9, 10, 4, 11, 12, 13, 14, 15, 16, 1, 17 | rngqiprngim 21193 | . . 3 β’ ((π β§ π β Ring) β (π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β (π RngIso (π Γs π½))) |
19 | rngimcnv 20394 | . . 3 β’ ((π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β (π RngIso (π Γs π½)) β β‘(π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β ((π Γs π½) RngIso π )) | |
20 | 18, 19 | syl 17 | . 2 β’ ((π β§ π β Ring) β β‘(π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β ((π Γs π½) RngIso π )) |
21 | rngisomring 20405 | . 2 β’ (((π Γs π½) β Ring β§ π β Rng β§ β‘(π₯ β (Baseβπ ) β¦ β¨[π₯](π ~QG πΌ), ((1rβπ½)(.rβπ )π₯)β©) β ((π Γs π½) RngIso π )) β π β Ring) | |
22 | 5, 7, 20, 21 | syl3anc 1368 | 1 β’ ((π β§ π β Ring) β π β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β¨cop 4631 β¦ cmpt 5227 β‘ccnv 5672 βcfv 6543 (class class class)co 7413 [cec 8716 Basecbs 17174 βΎs cress 17203 .rcmulr 17228 /s cqus 17481 Γs cxps 17482 ~QG cqg 19076 Rngcrng 20091 1rcur 20120 Ringcrg 20172 RngIso crngim 20373 2Idealc2idl 21142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-ec 8720 df-qs 8724 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-prds 17423 df-imas 17484 df-qus 17485 df-xps 17486 df-mgm 18594 df-mgmhm 18646 df-sgrp 18673 df-mnd 18689 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-nsg 19078 df-eqg 19079 df-ghm 19167 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-rnghm 20374 df-rngim 20375 df-subrng 20482 df-lss 20815 df-sra 21057 df-rgmod 21058 df-lidl 21103 df-2idl 21143 |
This theorem is referenced by: rngringbd 21197 ring2idlqusb 21199 ring2idlqus1 21208 |
Copyright terms: Public domain | W3C validator |