Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohomsub | Structured version Visualization version GIF version |
Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011.) |
Ref | Expression |
---|---|
rnghomsub.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rnghomsub.2 | ⊢ 𝑋 = ran 𝐺 |
rnghomsub.3 | ⊢ 𝐻 = ( /𝑔 ‘𝐺) |
rnghomsub.4 | ⊢ 𝐽 = (1st ‘𝑆) |
rnghomsub.5 | ⊢ 𝐾 = ( /𝑔 ‘𝐽) |
Ref | Expression |
---|---|
rngohomsub | ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghomsub.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 36047 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | 2 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐺 ∈ GrpOp) |
4 | rnghomsub.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
5 | 4 | rngogrpo 36047 | . . . 4 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) |
6 | 5 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐽 ∈ GrpOp) |
7 | 1, 4 | rngogrphom 36108 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
8 | 3, 6, 7 | 3jca 1126 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽))) |
9 | rnghomsub.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
10 | rnghomsub.3 | . . 3 ⊢ 𝐻 = ( /𝑔 ‘𝐺) | |
11 | rnghomsub.5 | . . 3 ⊢ 𝐾 = ( /𝑔 ‘𝐽) | |
12 | 9, 10, 11 | ghomdiv 36029 | . 2 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
13 | 8, 12 | sylan 579 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ran crn 5589 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 GrpOpcgr 28830 /𝑔 cgs 28833 GrpOpHom cghomOLD 36020 RingOpscrngo 36031 RngHom crnghom 36097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-map 8591 df-grpo 28834 df-gid 28835 df-ginv 28836 df-gdiv 28837 df-ablo 28886 df-ghomOLD 36021 df-rngo 36032 df-rngohom 36100 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |