Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomsub Structured version   Visualization version   GIF version

Theorem rngohomsub 37960
Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011.)
Hypotheses
Ref Expression
rnghomsub.1 𝐺 = (1st𝑅)
rnghomsub.2 𝑋 = ran 𝐺
rnghomsub.3 𝐻 = ( /𝑔𝐺)
rnghomsub.4 𝐽 = (1st𝑆)
rnghomsub.5 𝐾 = ( /𝑔𝐽)
Assertion
Ref Expression
rngohomsub (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))

Proof of Theorem rngohomsub
StepHypRef Expression
1 rnghomsub.1 . . . . 5 𝐺 = (1st𝑅)
21rngogrpo 37897 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
323ad2ant1 1133 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐺 ∈ GrpOp)
4 rnghomsub.4 . . . . 5 𝐽 = (1st𝑆)
54rngogrpo 37897 . . . 4 (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp)
653ad2ant2 1134 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐽 ∈ GrpOp)
71, 4rngogrphom 37958 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))
83, 6, 73jca 1128 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)))
9 rnghomsub.2 . . 3 𝑋 = ran 𝐺
10 rnghomsub.3 . . 3 𝐻 = ( /𝑔𝐺)
11 rnghomsub.5 . . 3 𝐾 = ( /𝑔𝐽)
129, 10, 11ghomdiv 37879 . 2 (((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
138, 12sylan 580 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5632  cfv 6499  (class class class)co 7369  1st c1st 7945  GrpOpcgr 30468   /𝑔 cgs 30471   GrpOpHom cghomOLD 37870  RingOpscrngo 37881   RingOpsHom crngohom 37947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-ghomOLD 37871  df-rngo 37882  df-rngohom 37950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator