Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomsub Structured version   Visualization version   GIF version

Theorem rngohomsub 37939
Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011.)
Hypotheses
Ref Expression
rnghomsub.1 𝐺 = (1st𝑅)
rnghomsub.2 𝑋 = ran 𝐺
rnghomsub.3 𝐻 = ( /𝑔𝐺)
rnghomsub.4 𝐽 = (1st𝑆)
rnghomsub.5 𝐾 = ( /𝑔𝐽)
Assertion
Ref Expression
rngohomsub (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))

Proof of Theorem rngohomsub
StepHypRef Expression
1 rnghomsub.1 . . . . 5 𝐺 = (1st𝑅)
21rngogrpo 37876 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
323ad2ant1 1133 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐺 ∈ GrpOp)
4 rnghomsub.4 . . . . 5 𝐽 = (1st𝑆)
54rngogrpo 37876 . . . 4 (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp)
653ad2ant2 1134 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐽 ∈ GrpOp)
71, 4rngogrphom 37937 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))
83, 6, 73jca 1128 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)))
9 rnghomsub.2 . . 3 𝑋 = ran 𝐺
10 rnghomsub.3 . . 3 𝐻 = ( /𝑔𝐺)
11 rnghomsub.5 . . 3 𝐾 = ( /𝑔𝐽)
129, 10, 11ghomdiv 37858 . 2 (((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
138, 12sylan 580 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹𝐴)𝐾(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  ran crn 5666  cfv 6541  (class class class)co 7413  1st c1st 7994  GrpOpcgr 30436   /𝑔 cgs 30439   GrpOpHom cghomOLD 37849  RingOpscrngo 37860   RingOpsHom crngohom 37926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-map 8850  df-grpo 30440  df-gid 30441  df-ginv 30442  df-gdiv 30443  df-ablo 30492  df-ghomOLD 37850  df-rngo 37861  df-rngohom 37929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator