![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohomsub | Structured version Visualization version GIF version |
Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011.) |
Ref | Expression |
---|---|
rnghomsub.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rnghomsub.2 | ⊢ 𝑋 = ran 𝐺 |
rnghomsub.3 | ⊢ 𝐻 = ( /𝑔 ‘𝐺) |
rnghomsub.4 | ⊢ 𝐽 = (1st ‘𝑆) |
rnghomsub.5 | ⊢ 𝐾 = ( /𝑔 ‘𝐽) |
Ref | Expression |
---|---|
rngohomsub | ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghomsub.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37613 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | 2 | 3ad2ant1 1130 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐺 ∈ GrpOp) |
4 | rnghomsub.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
5 | 4 | rngogrpo 37613 | . . . 4 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) |
6 | 5 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐽 ∈ GrpOp) |
7 | 1, 4 | rngogrphom 37674 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
8 | 3, 6, 7 | 3jca 1125 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽))) |
9 | rnghomsub.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
10 | rnghomsub.3 | . . 3 ⊢ 𝐻 = ( /𝑔 ‘𝐺) | |
11 | rnghomsub.5 | . . 3 ⊢ 𝐾 = ( /𝑔 ‘𝐽) | |
12 | 9, 10, 11 | ghomdiv 37595 | . 2 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
13 | 8, 12 | sylan 578 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ran crn 5685 ‘cfv 6556 (class class class)co 7426 1st c1st 8003 GrpOpcgr 30425 /𝑔 cgs 30428 GrpOpHom cghomOLD 37586 RingOpscrngo 37597 RingOpsHom crngohom 37663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8005 df-2nd 8006 df-map 8859 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-ghomOLD 37587 df-rngo 37598 df-rngohom 37666 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |