| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohomsub | Structured version Visualization version GIF version | ||
| Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| rnghomsub.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rnghomsub.2 | ⊢ 𝑋 = ran 𝐺 |
| rnghomsub.3 | ⊢ 𝐻 = ( /𝑔 ‘𝐺) |
| rnghomsub.4 | ⊢ 𝐽 = (1st ‘𝑆) |
| rnghomsub.5 | ⊢ 𝐾 = ( /𝑔 ‘𝐽) |
| Ref | Expression |
|---|---|
| rngohomsub | ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghomsub.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37910 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐺 ∈ GrpOp) |
| 4 | rnghomsub.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
| 5 | 4 | rngogrpo 37910 | . . . 4 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) |
| 6 | 5 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐽 ∈ GrpOp) |
| 7 | 1, 4 | rngogrphom 37971 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
| 8 | 3, 6, 7 | 3jca 1128 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽))) |
| 9 | rnghomsub.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 10 | rnghomsub.3 | . . 3 ⊢ 𝐻 = ( /𝑔 ‘𝐺) | |
| 11 | rnghomsub.5 | . . 3 ⊢ 𝐾 = ( /𝑔 ‘𝐽) | |
| 12 | 9, 10, 11 | ghomdiv 37892 | . 2 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
| 13 | 8, 12 | sylan 580 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5620 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 GrpOpcgr 30437 /𝑔 cgs 30440 GrpOpHom cghomOLD 37883 RingOpscrngo 37894 RingOpsHom crngohom 37960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-grpo 30441 df-gid 30442 df-ginv 30443 df-gdiv 30444 df-ablo 30493 df-ghomOLD 37884 df-rngo 37895 df-rngohom 37963 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |