| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohomsub | Structured version Visualization version GIF version | ||
| Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| Ref | Expression |
|---|---|
| rnghomsub.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rnghomsub.2 | ⊢ 𝑋 = ran 𝐺 |
| rnghomsub.3 | ⊢ 𝐻 = ( /𝑔 ‘𝐺) |
| rnghomsub.4 | ⊢ 𝐽 = (1st ‘𝑆) |
| rnghomsub.5 | ⊢ 𝐾 = ( /𝑔 ‘𝐽) |
| Ref | Expression |
|---|---|
| rngohomsub | ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghomsub.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37911 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐺 ∈ GrpOp) |
| 4 | rnghomsub.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
| 5 | 4 | rngogrpo 37911 | . . . 4 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) |
| 6 | 5 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐽 ∈ GrpOp) |
| 7 | 1, 4 | rngogrphom 37972 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
| 8 | 3, 6, 7 | 3jca 1128 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽))) |
| 9 | rnghomsub.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 10 | rnghomsub.3 | . . 3 ⊢ 𝐻 = ( /𝑔 ‘𝐺) | |
| 11 | rnghomsub.5 | . . 3 ⊢ 𝐾 = ( /𝑔 ‘𝐽) | |
| 12 | 9, 10, 11 | ghomdiv 37893 | . 2 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
| 13 | 8, 12 | sylan 580 | 1 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5642 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 GrpOpcgr 30425 /𝑔 cgs 30428 GrpOpHom cghomOLD 37884 RingOpscrngo 37895 RingOpsHom crngohom 37961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-ghomOLD 37885 df-rngo 37896 df-rngohom 37964 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |