Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngokerinj Structured version   Visualization version   GIF version

Theorem rngokerinj 36133
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngkerinj.1 𝐺 = (1st𝑅)
rngkerinj.2 𝑋 = ran 𝐺
rngkerinj.3 𝑊 = (GId‘𝐺)
rngkerinj.4 𝐽 = (1st𝑆)
rngkerinj.5 𝑌 = ran 𝐽
rngkerinj.6 𝑍 = (GId‘𝐽)
Assertion
Ref Expression
rngokerinj ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))

Proof of Theorem rngokerinj
StepHypRef Expression
1 eqid 2738 . . . 4 (1st𝑅) = (1st𝑅)
21rngogrpo 36068 . . 3 (𝑅 ∈ RingOps → (1st𝑅) ∈ GrpOp)
323ad2ant1 1132 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st𝑅) ∈ GrpOp)
4 eqid 2738 . . . 4 (1st𝑆) = (1st𝑆)
54rngogrpo 36068 . . 3 (𝑆 ∈ RingOps → (1st𝑆) ∈ GrpOp)
653ad2ant2 1133 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st𝑆) ∈ GrpOp)
71, 4rngogrphom 36129 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ ((1st𝑅) GrpOpHom (1st𝑆)))
8 rngkerinj.2 . . . 4 𝑋 = ran 𝐺
9 rngkerinj.1 . . . . 5 𝐺 = (1st𝑅)
109rneqi 5846 . . . 4 ran 𝐺 = ran (1st𝑅)
118, 10eqtri 2766 . . 3 𝑋 = ran (1st𝑅)
12 rngkerinj.3 . . . 4 𝑊 = (GId‘𝐺)
139fveq2i 6777 . . . 4 (GId‘𝐺) = (GId‘(1st𝑅))
1412, 13eqtri 2766 . . 3 𝑊 = (GId‘(1st𝑅))
15 rngkerinj.5 . . . 4 𝑌 = ran 𝐽
16 rngkerinj.4 . . . . 5 𝐽 = (1st𝑆)
1716rneqi 5846 . . . 4 ran 𝐽 = ran (1st𝑆)
1815, 17eqtri 2766 . . 3 𝑌 = ran (1st𝑆)
19 rngkerinj.6 . . . 4 𝑍 = (GId‘𝐽)
2016fveq2i 6777 . . . 4 (GId‘𝐽) = (GId‘(1st𝑆))
2119, 20eqtri 2766 . . 3 𝑍 = (GId‘(1st𝑆))
2211, 14, 18, 21grpokerinj 36051 . 2 (((1st𝑅) ∈ GrpOp ∧ (1st𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st𝑅) GrpOpHom (1st𝑆))) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))
233, 6, 7, 22syl3anc 1370 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  {csn 4561  ccnv 5588  ran crn 5590  cima 5592  1-1wf1 6430  cfv 6433  (class class class)co 7275  1st c1st 7829  GrpOpcgr 28851  GIdcgi 28852   GrpOpHom cghomOLD 36041  RingOpscrngo 36052   RngHom crnghom 36118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-ghomOLD 36042  df-rngo 36053  df-rngohom 36121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator