![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngokerinj | Structured version Visualization version GIF version |
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngkerinj.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngkerinj.2 | ⊢ 𝑋 = ran 𝐺 |
rngkerinj.3 | ⊢ 𝑊 = (GId‘𝐺) |
rngkerinj.4 | ⊢ 𝐽 = (1st ‘𝑆) |
rngkerinj.5 | ⊢ 𝑌 = ran 𝐽 |
rngkerinj.6 | ⊢ 𝑍 = (GId‘𝐽) |
Ref | Expression |
---|---|
rngokerinj | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | 1 | rngogrpo 36778 | . . 3 ⊢ (𝑅 ∈ RingOps → (1st ‘𝑅) ∈ GrpOp) |
3 | 2 | 3ad2ant1 1134 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st ‘𝑅) ∈ GrpOp) |
4 | eqid 2733 | . . . 4 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
5 | 4 | rngogrpo 36778 | . . 3 ⊢ (𝑆 ∈ RingOps → (1st ‘𝑆) ∈ GrpOp) |
6 | 5 | 3ad2ant2 1135 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st ‘𝑆) ∈ GrpOp) |
7 | 1, 4 | rngogrphom 36839 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) |
8 | rngkerinj.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
9 | rngkerinj.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
10 | 9 | rneqi 5937 | . . . 4 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
11 | 8, 10 | eqtri 2761 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) |
12 | rngkerinj.3 | . . . 4 ⊢ 𝑊 = (GId‘𝐺) | |
13 | 9 | fveq2i 6895 | . . . 4 ⊢ (GId‘𝐺) = (GId‘(1st ‘𝑅)) |
14 | 12, 13 | eqtri 2761 | . . 3 ⊢ 𝑊 = (GId‘(1st ‘𝑅)) |
15 | rngkerinj.5 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
16 | rngkerinj.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
17 | 16 | rneqi 5937 | . . . 4 ⊢ ran 𝐽 = ran (1st ‘𝑆) |
18 | 15, 17 | eqtri 2761 | . . 3 ⊢ 𝑌 = ran (1st ‘𝑆) |
19 | rngkerinj.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐽) | |
20 | 16 | fveq2i 6895 | . . . 4 ⊢ (GId‘𝐽) = (GId‘(1st ‘𝑆)) |
21 | 19, 20 | eqtri 2761 | . . 3 ⊢ 𝑍 = (GId‘(1st ‘𝑆)) |
22 | 11, 14, 18, 21 | grpokerinj 36761 | . 2 ⊢ (((1st ‘𝑅) ∈ GrpOp ∧ (1st ‘𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
23 | 3, 6, 7, 22 | syl3anc 1372 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 {csn 4629 ◡ccnv 5676 ran crn 5678 “ cima 5680 –1-1→wf1 6541 ‘cfv 6544 (class class class)co 7409 1st c1st 7973 GrpOpcgr 29742 GIdcgi 29743 GrpOpHom cghomOLD 36751 RingOpscrngo 36762 RngHom crnghom 36828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-grpo 29746 df-gid 29747 df-ginv 29748 df-gdiv 29749 df-ablo 29798 df-ghomOLD 36752 df-rngo 36763 df-rngohom 36831 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |