Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngokerinj Structured version   Visualization version   GIF version

Theorem rngokerinj 36843
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngkerinj.1 𝐺 = (1st𝑅)
rngkerinj.2 𝑋 = ran 𝐺
rngkerinj.3 𝑊 = (GId‘𝐺)
rngkerinj.4 𝐽 = (1st𝑆)
rngkerinj.5 𝑌 = ran 𝐽
rngkerinj.6 𝑍 = (GId‘𝐽)
Assertion
Ref Expression
rngokerinj ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))

Proof of Theorem rngokerinj
StepHypRef Expression
1 eqid 2733 . . . 4 (1st𝑅) = (1st𝑅)
21rngogrpo 36778 . . 3 (𝑅 ∈ RingOps → (1st𝑅) ∈ GrpOp)
323ad2ant1 1134 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st𝑅) ∈ GrpOp)
4 eqid 2733 . . . 4 (1st𝑆) = (1st𝑆)
54rngogrpo 36778 . . 3 (𝑆 ∈ RingOps → (1st𝑆) ∈ GrpOp)
653ad2ant2 1135 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st𝑆) ∈ GrpOp)
71, 4rngogrphom 36839 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ ((1st𝑅) GrpOpHom (1st𝑆)))
8 rngkerinj.2 . . . 4 𝑋 = ran 𝐺
9 rngkerinj.1 . . . . 5 𝐺 = (1st𝑅)
109rneqi 5937 . . . 4 ran 𝐺 = ran (1st𝑅)
118, 10eqtri 2761 . . 3 𝑋 = ran (1st𝑅)
12 rngkerinj.3 . . . 4 𝑊 = (GId‘𝐺)
139fveq2i 6895 . . . 4 (GId‘𝐺) = (GId‘(1st𝑅))
1412, 13eqtri 2761 . . 3 𝑊 = (GId‘(1st𝑅))
15 rngkerinj.5 . . . 4 𝑌 = ran 𝐽
16 rngkerinj.4 . . . . 5 𝐽 = (1st𝑆)
1716rneqi 5937 . . . 4 ran 𝐽 = ran (1st𝑆)
1815, 17eqtri 2761 . . 3 𝑌 = ran (1st𝑆)
19 rngkerinj.6 . . . 4 𝑍 = (GId‘𝐽)
2016fveq2i 6895 . . . 4 (GId‘𝐽) = (GId‘(1st𝑆))
2119, 20eqtri 2761 . . 3 𝑍 = (GId‘(1st𝑆))
2211, 14, 18, 21grpokerinj 36761 . 2 (((1st𝑅) ∈ GrpOp ∧ (1st𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st𝑅) GrpOpHom (1st𝑆))) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))
233, 6, 7, 22syl3anc 1372 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107  {csn 4629  ccnv 5676  ran crn 5678  cima 5680  1-1wf1 6541  cfv 6544  (class class class)co 7409  1st c1st 7973  GrpOpcgr 29742  GIdcgi 29743   GrpOpHom cghomOLD 36751  RingOpscrngo 36762   RngHom crnghom 36828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-grpo 29746  df-gid 29747  df-ginv 29748  df-gdiv 29749  df-ablo 29798  df-ghomOLD 36752  df-rngo 36763  df-rngohom 36831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator