| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngokerinj | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| rngkerinj.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rngkerinj.2 | ⊢ 𝑋 = ran 𝐺 |
| rngkerinj.3 | ⊢ 𝑊 = (GId‘𝐺) |
| rngkerinj.4 | ⊢ 𝐽 = (1st ‘𝑆) |
| rngkerinj.5 | ⊢ 𝑌 = ran 𝐽 |
| rngkerinj.6 | ⊢ 𝑍 = (GId‘𝐽) |
| Ref | Expression |
|---|---|
| rngokerinj | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37960 | . . 3 ⊢ (𝑅 ∈ RingOps → (1st ‘𝑅) ∈ GrpOp) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st ‘𝑅) ∈ GrpOp) |
| 4 | eqid 2731 | . . . 4 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
| 5 | 4 | rngogrpo 37960 | . . 3 ⊢ (𝑆 ∈ RingOps → (1st ‘𝑆) ∈ GrpOp) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st ‘𝑆) ∈ GrpOp) |
| 7 | 1, 4 | rngogrphom 38021 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) |
| 8 | rngkerinj.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 9 | rngkerinj.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 10 | 9 | rneqi 5876 | . . . 4 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 11 | 8, 10 | eqtri 2754 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) |
| 12 | rngkerinj.3 | . . . 4 ⊢ 𝑊 = (GId‘𝐺) | |
| 13 | 9 | fveq2i 6825 | . . . 4 ⊢ (GId‘𝐺) = (GId‘(1st ‘𝑅)) |
| 14 | 12, 13 | eqtri 2754 | . . 3 ⊢ 𝑊 = (GId‘(1st ‘𝑅)) |
| 15 | rngkerinj.5 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
| 16 | rngkerinj.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
| 17 | 16 | rneqi 5876 | . . . 4 ⊢ ran 𝐽 = ran (1st ‘𝑆) |
| 18 | 15, 17 | eqtri 2754 | . . 3 ⊢ 𝑌 = ran (1st ‘𝑆) |
| 19 | rngkerinj.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐽) | |
| 20 | 16 | fveq2i 6825 | . . . 4 ⊢ (GId‘𝐽) = (GId‘(1st ‘𝑆)) |
| 21 | 19, 20 | eqtri 2754 | . . 3 ⊢ 𝑍 = (GId‘(1st ‘𝑆)) |
| 22 | 11, 14, 18, 21 | grpokerinj 37943 | . 2 ⊢ (((1st ‘𝑅) ∈ GrpOp ∧ (1st ‘𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| 23 | 3, 6, 7, 22 | syl3anc 1373 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4573 ◡ccnv 5613 ran crn 5615 “ cima 5617 –1-1→wf1 6478 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 GrpOpcgr 30469 GIdcgi 30470 GrpOpHom cghomOLD 37933 RingOpscrngo 37944 RingOpsHom crngohom 38010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-ghomOLD 37934 df-rngo 37945 df-rngohom 38013 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |