| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngokerinj | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| rngkerinj.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rngkerinj.2 | ⊢ 𝑋 = ran 𝐺 |
| rngkerinj.3 | ⊢ 𝑊 = (GId‘𝐺) |
| rngkerinj.4 | ⊢ 𝐽 = (1st ‘𝑆) |
| rngkerinj.5 | ⊢ 𝑌 = ran 𝐽 |
| rngkerinj.6 | ⊢ 𝑍 = (GId‘𝐽) |
| Ref | Expression |
|---|---|
| rngokerinj | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37904 | . . 3 ⊢ (𝑅 ∈ RingOps → (1st ‘𝑅) ∈ GrpOp) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st ‘𝑅) ∈ GrpOp) |
| 4 | eqid 2729 | . . . 4 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
| 5 | 4 | rngogrpo 37904 | . . 3 ⊢ (𝑆 ∈ RingOps → (1st ‘𝑆) ∈ GrpOp) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st ‘𝑆) ∈ GrpOp) |
| 7 | 1, 4 | rngogrphom 37965 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) |
| 8 | rngkerinj.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 9 | rngkerinj.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 10 | 9 | rneqi 5901 | . . . 4 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 11 | 8, 10 | eqtri 2752 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) |
| 12 | rngkerinj.3 | . . . 4 ⊢ 𝑊 = (GId‘𝐺) | |
| 13 | 9 | fveq2i 6861 | . . . 4 ⊢ (GId‘𝐺) = (GId‘(1st ‘𝑅)) |
| 14 | 12, 13 | eqtri 2752 | . . 3 ⊢ 𝑊 = (GId‘(1st ‘𝑅)) |
| 15 | rngkerinj.5 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
| 16 | rngkerinj.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
| 17 | 16 | rneqi 5901 | . . . 4 ⊢ ran 𝐽 = ran (1st ‘𝑆) |
| 18 | 15, 17 | eqtri 2752 | . . 3 ⊢ 𝑌 = ran (1st ‘𝑆) |
| 19 | rngkerinj.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐽) | |
| 20 | 16 | fveq2i 6861 | . . . 4 ⊢ (GId‘𝐽) = (GId‘(1st ‘𝑆)) |
| 21 | 19, 20 | eqtri 2752 | . . 3 ⊢ 𝑍 = (GId‘(1st ‘𝑆)) |
| 22 | 11, 14, 18, 21 | grpokerinj 37887 | . 2 ⊢ (((1st ‘𝑅) ∈ GrpOp ∧ (1st ‘𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| 23 | 3, 6, 7, 22 | syl3anc 1373 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4589 ◡ccnv 5637 ran crn 5639 “ cima 5641 –1-1→wf1 6508 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 GrpOpcgr 30418 GIdcgi 30419 GrpOpHom cghomOLD 37877 RingOpscrngo 37888 RingOpsHom crngohom 37954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-ghomOLD 37878 df-rngo 37889 df-rngohom 37957 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |