| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngokerinj | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| rngkerinj.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rngkerinj.2 | ⊢ 𝑋 = ran 𝐺 |
| rngkerinj.3 | ⊢ 𝑊 = (GId‘𝐺) |
| rngkerinj.4 | ⊢ 𝐽 = (1st ‘𝑆) |
| rngkerinj.5 | ⊢ 𝑌 = ran 𝐽 |
| rngkerinj.6 | ⊢ 𝑍 = (GId‘𝐽) |
| Ref | Expression |
|---|---|
| rngokerinj | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37876 | . . 3 ⊢ (𝑅 ∈ RingOps → (1st ‘𝑅) ∈ GrpOp) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st ‘𝑅) ∈ GrpOp) |
| 4 | eqid 2734 | . . . 4 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
| 5 | 4 | rngogrpo 37876 | . . 3 ⊢ (𝑆 ∈ RingOps → (1st ‘𝑆) ∈ GrpOp) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st ‘𝑆) ∈ GrpOp) |
| 7 | 1, 4 | rngogrphom 37937 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) |
| 8 | rngkerinj.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 9 | rngkerinj.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 10 | 9 | rneqi 5928 | . . . 4 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 11 | 8, 10 | eqtri 2757 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) |
| 12 | rngkerinj.3 | . . . 4 ⊢ 𝑊 = (GId‘𝐺) | |
| 13 | 9 | fveq2i 6889 | . . . 4 ⊢ (GId‘𝐺) = (GId‘(1st ‘𝑅)) |
| 14 | 12, 13 | eqtri 2757 | . . 3 ⊢ 𝑊 = (GId‘(1st ‘𝑅)) |
| 15 | rngkerinj.5 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
| 16 | rngkerinj.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
| 17 | 16 | rneqi 5928 | . . . 4 ⊢ ran 𝐽 = ran (1st ‘𝑆) |
| 18 | 15, 17 | eqtri 2757 | . . 3 ⊢ 𝑌 = ran (1st ‘𝑆) |
| 19 | rngkerinj.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐽) | |
| 20 | 16 | fveq2i 6889 | . . . 4 ⊢ (GId‘𝐽) = (GId‘(1st ‘𝑆)) |
| 21 | 19, 20 | eqtri 2757 | . . 3 ⊢ 𝑍 = (GId‘(1st ‘𝑆)) |
| 22 | 11, 14, 18, 21 | grpokerinj 37859 | . 2 ⊢ (((1st ‘𝑅) ∈ GrpOp ∧ (1st ‘𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| 23 | 3, 6, 7, 22 | syl3anc 1372 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {csn 4606 ◡ccnv 5664 ran crn 5666 “ cima 5668 –1-1→wf1 6538 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 GrpOpcgr 30436 GIdcgi 30437 GrpOpHom cghomOLD 37849 RingOpscrngo 37860 RingOpsHom crngohom 37926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-map 8850 df-grpo 30440 df-gid 30441 df-ginv 30442 df-gdiv 30443 df-ablo 30492 df-ghomOLD 37850 df-rngo 37861 df-rngohom 37929 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |