![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngokerinj | Structured version Visualization version GIF version |
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngkerinj.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngkerinj.2 | ⊢ 𝑋 = ran 𝐺 |
rngkerinj.3 | ⊢ 𝑊 = (GId‘𝐺) |
rngkerinj.4 | ⊢ 𝐽 = (1st ‘𝑆) |
rngkerinj.5 | ⊢ 𝑌 = ran 𝐽 |
rngkerinj.6 | ⊢ 𝑍 = (GId‘𝐽) |
Ref | Expression |
---|---|
rngokerinj | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37291 | . . 3 ⊢ (𝑅 ∈ RingOps → (1st ‘𝑅) ∈ GrpOp) |
3 | 2 | 3ad2ant1 1130 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st ‘𝑅) ∈ GrpOp) |
4 | eqid 2726 | . . . 4 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
5 | 4 | rngogrpo 37291 | . . 3 ⊢ (𝑆 ∈ RingOps → (1st ‘𝑆) ∈ GrpOp) |
6 | 5 | 3ad2ant2 1131 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st ‘𝑆) ∈ GrpOp) |
7 | 1, 4 | rngogrphom 37352 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) |
8 | rngkerinj.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
9 | rngkerinj.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
10 | 9 | rneqi 5930 | . . . 4 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
11 | 8, 10 | eqtri 2754 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) |
12 | rngkerinj.3 | . . . 4 ⊢ 𝑊 = (GId‘𝐺) | |
13 | 9 | fveq2i 6888 | . . . 4 ⊢ (GId‘𝐺) = (GId‘(1st ‘𝑅)) |
14 | 12, 13 | eqtri 2754 | . . 3 ⊢ 𝑊 = (GId‘(1st ‘𝑅)) |
15 | rngkerinj.5 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
16 | rngkerinj.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
17 | 16 | rneqi 5930 | . . . 4 ⊢ ran 𝐽 = ran (1st ‘𝑆) |
18 | 15, 17 | eqtri 2754 | . . 3 ⊢ 𝑌 = ran (1st ‘𝑆) |
19 | rngkerinj.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐽) | |
20 | 16 | fveq2i 6888 | . . . 4 ⊢ (GId‘𝐽) = (GId‘(1st ‘𝑆)) |
21 | 19, 20 | eqtri 2754 | . . 3 ⊢ 𝑍 = (GId‘(1st ‘𝑆)) |
22 | 11, 14, 18, 21 | grpokerinj 37274 | . 2 ⊢ (((1st ‘𝑅) ∈ GrpOp ∧ (1st ‘𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
23 | 3, 6, 7, 22 | syl3anc 1368 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {csn 4623 ◡ccnv 5668 ran crn 5670 “ cima 5672 –1-1→wf1 6534 ‘cfv 6537 (class class class)co 7405 1st c1st 7972 GrpOpcgr 30251 GIdcgi 30252 GrpOpHom cghomOLD 37264 RingOpscrngo 37275 RingOpsHom crngohom 37341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-map 8824 df-grpo 30255 df-gid 30256 df-ginv 30257 df-gdiv 30258 df-ablo 30307 df-ghomOLD 37265 df-rngo 37276 df-rngohom 37344 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |