Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngokerinj | Structured version Visualization version GIF version |
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngkerinj.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngkerinj.2 | ⊢ 𝑋 = ran 𝐺 |
rngkerinj.3 | ⊢ 𝑊 = (GId‘𝐺) |
rngkerinj.4 | ⊢ 𝐽 = (1st ‘𝑆) |
rngkerinj.5 | ⊢ 𝑌 = ran 𝐽 |
rngkerinj.6 | ⊢ 𝑍 = (GId‘𝐽) |
Ref | Expression |
---|---|
rngokerinj | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | 1 | rngogrpo 36128 | . . 3 ⊢ (𝑅 ∈ RingOps → (1st ‘𝑅) ∈ GrpOp) |
3 | 2 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st ‘𝑅) ∈ GrpOp) |
4 | eqid 2737 | . . . 4 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
5 | 4 | rngogrpo 36128 | . . 3 ⊢ (𝑆 ∈ RingOps → (1st ‘𝑆) ∈ GrpOp) |
6 | 5 | 3ad2ant2 1133 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st ‘𝑆) ∈ GrpOp) |
7 | 1, 4 | rngogrphom 36189 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) |
8 | rngkerinj.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
9 | rngkerinj.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
10 | 9 | rneqi 5863 | . . . 4 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
11 | 8, 10 | eqtri 2765 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) |
12 | rngkerinj.3 | . . . 4 ⊢ 𝑊 = (GId‘𝐺) | |
13 | 9 | fveq2i 6812 | . . . 4 ⊢ (GId‘𝐺) = (GId‘(1st ‘𝑅)) |
14 | 12, 13 | eqtri 2765 | . . 3 ⊢ 𝑊 = (GId‘(1st ‘𝑅)) |
15 | rngkerinj.5 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
16 | rngkerinj.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
17 | 16 | rneqi 5863 | . . . 4 ⊢ ran 𝐽 = ran (1st ‘𝑆) |
18 | 15, 17 | eqtri 2765 | . . 3 ⊢ 𝑌 = ran (1st ‘𝑆) |
19 | rngkerinj.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐽) | |
20 | 16 | fveq2i 6812 | . . . 4 ⊢ (GId‘𝐽) = (GId‘(1st ‘𝑆)) |
21 | 19, 20 | eqtri 2765 | . . 3 ⊢ 𝑍 = (GId‘(1st ‘𝑆)) |
22 | 11, 14, 18, 21 | grpokerinj 36111 | . 2 ⊢ (((1st ‘𝑅) ∈ GrpOp ∧ (1st ‘𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
23 | 3, 6, 7, 22 | syl3anc 1370 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {csn 4569 ◡ccnv 5604 ran crn 5606 “ cima 5608 –1-1→wf1 6460 ‘cfv 6463 (class class class)co 7313 1st c1st 7872 GrpOpcgr 28959 GIdcgi 28960 GrpOpHom cghomOLD 36101 RingOpscrngo 36112 RngHom crnghom 36178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-1st 7874 df-2nd 7875 df-map 8663 df-grpo 28963 df-gid 28964 df-ginv 28965 df-gdiv 28966 df-ablo 29015 df-ghomOLD 36102 df-rngo 36113 df-rngohom 36181 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |