Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngokerinj | Structured version Visualization version GIF version |
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngkerinj.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngkerinj.2 | ⊢ 𝑋 = ran 𝐺 |
rngkerinj.3 | ⊢ 𝑊 = (GId‘𝐺) |
rngkerinj.4 | ⊢ 𝐽 = (1st ‘𝑆) |
rngkerinj.5 | ⊢ 𝑌 = ran 𝐽 |
rngkerinj.6 | ⊢ 𝑍 = (GId‘𝐽) |
Ref | Expression |
---|---|
rngokerinj | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
2 | 1 | rngogrpo 35995 | . . 3 ⊢ (𝑅 ∈ RingOps → (1st ‘𝑅) ∈ GrpOp) |
3 | 2 | 3ad2ant1 1131 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st ‘𝑅) ∈ GrpOp) |
4 | eqid 2738 | . . . 4 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
5 | 4 | rngogrpo 35995 | . . 3 ⊢ (𝑆 ∈ RingOps → (1st ‘𝑆) ∈ GrpOp) |
6 | 5 | 3ad2ant2 1132 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (1st ‘𝑆) ∈ GrpOp) |
7 | 1, 4 | rngogrphom 36056 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) |
8 | rngkerinj.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
9 | rngkerinj.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
10 | 9 | rneqi 5835 | . . . 4 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
11 | 8, 10 | eqtri 2766 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) |
12 | rngkerinj.3 | . . . 4 ⊢ 𝑊 = (GId‘𝐺) | |
13 | 9 | fveq2i 6759 | . . . 4 ⊢ (GId‘𝐺) = (GId‘(1st ‘𝑅)) |
14 | 12, 13 | eqtri 2766 | . . 3 ⊢ 𝑊 = (GId‘(1st ‘𝑅)) |
15 | rngkerinj.5 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
16 | rngkerinj.4 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
17 | 16 | rneqi 5835 | . . . 4 ⊢ ran 𝐽 = ran (1st ‘𝑆) |
18 | 15, 17 | eqtri 2766 | . . 3 ⊢ 𝑌 = ran (1st ‘𝑆) |
19 | rngkerinj.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐽) | |
20 | 16 | fveq2i 6759 | . . . 4 ⊢ (GId‘𝐽) = (GId‘(1st ‘𝑆)) |
21 | 19, 20 | eqtri 2766 | . . 3 ⊢ 𝑍 = (GId‘(1st ‘𝑆)) |
22 | 11, 14, 18, 21 | grpokerinj 35978 | . 2 ⊢ (((1st ‘𝑅) ∈ GrpOp ∧ (1st ‘𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st ‘𝑅) GrpOpHom (1st ‘𝑆))) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
23 | 3, 6, 7, 22 | syl3anc 1369 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {csn 4558 ◡ccnv 5579 ran crn 5581 “ cima 5583 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 GrpOpcgr 28752 GIdcgi 28753 GrpOpHom cghomOLD 35968 RingOpscrngo 35979 RngHom crnghom 36045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-ghomOLD 35969 df-rngo 35980 df-rngohom 36048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |