Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngokerinj Structured version   Visualization version   GIF version

Theorem rngokerinj 37962
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngkerinj.1 𝐺 = (1st𝑅)
rngkerinj.2 𝑋 = ran 𝐺
rngkerinj.3 𝑊 = (GId‘𝐺)
rngkerinj.4 𝐽 = (1st𝑆)
rngkerinj.5 𝑌 = ran 𝐽
rngkerinj.6 𝑍 = (GId‘𝐽)
Assertion
Ref Expression
rngokerinj ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))

Proof of Theorem rngokerinj
StepHypRef Expression
1 eqid 2729 . . . 4 (1st𝑅) = (1st𝑅)
21rngogrpo 37897 . . 3 (𝑅 ∈ RingOps → (1st𝑅) ∈ GrpOp)
323ad2ant1 1133 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st𝑅) ∈ GrpOp)
4 eqid 2729 . . . 4 (1st𝑆) = (1st𝑆)
54rngogrpo 37897 . . 3 (𝑆 ∈ RingOps → (1st𝑆) ∈ GrpOp)
653ad2ant2 1134 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (1st𝑆) ∈ GrpOp)
71, 4rngogrphom 37958 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ ((1st𝑅) GrpOpHom (1st𝑆)))
8 rngkerinj.2 . . . 4 𝑋 = ran 𝐺
9 rngkerinj.1 . . . . 5 𝐺 = (1st𝑅)
109rneqi 5890 . . . 4 ran 𝐺 = ran (1st𝑅)
118, 10eqtri 2752 . . 3 𝑋 = ran (1st𝑅)
12 rngkerinj.3 . . . 4 𝑊 = (GId‘𝐺)
139fveq2i 6843 . . . 4 (GId‘𝐺) = (GId‘(1st𝑅))
1412, 13eqtri 2752 . . 3 𝑊 = (GId‘(1st𝑅))
15 rngkerinj.5 . . . 4 𝑌 = ran 𝐽
16 rngkerinj.4 . . . . 5 𝐽 = (1st𝑆)
1716rneqi 5890 . . . 4 ran 𝐽 = ran (1st𝑆)
1815, 17eqtri 2752 . . 3 𝑌 = ran (1st𝑆)
19 rngkerinj.6 . . . 4 𝑍 = (GId‘𝐽)
2016fveq2i 6843 . . . 4 (GId‘𝐽) = (GId‘(1st𝑆))
2119, 20eqtri 2752 . . 3 𝑍 = (GId‘(1st𝑆))
2211, 14, 18, 21grpokerinj 37880 . 2 (((1st𝑅) ∈ GrpOp ∧ (1st𝑆) ∈ GrpOp ∧ 𝐹 ∈ ((1st𝑅) GrpOpHom (1st𝑆))) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))
233, 6, 7, 22syl3anc 1373 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑍}) = {𝑊}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  {csn 4585  ccnv 5630  ran crn 5632  cima 5634  1-1wf1 6496  cfv 6499  (class class class)co 7369  1st c1st 7945  GrpOpcgr 30468  GIdcgi 30469   GrpOpHom cghomOLD 37870  RingOpscrngo 37881   RingOpsHom crngohom 37947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-ghomOLD 37871  df-rngo 37882  df-rngohom 37950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator