| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohom0 | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism preserves 0. (Contributed by Jeff Madsen, 2-Jan-2011.) |
| Ref | Expression |
|---|---|
| rnghom0.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rnghom0.2 | ⊢ 𝑍 = (GId‘𝐺) |
| rnghom0.3 | ⊢ 𝐽 = (1st ‘𝑆) |
| rnghom0.4 | ⊢ 𝑊 = (GId‘𝐽) |
| Ref | Expression |
|---|---|
| rngohom0 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑍) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghom0.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37904 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐺 ∈ GrpOp) |
| 4 | rnghom0.3 | . . . 4 ⊢ 𝐽 = (1st ‘𝑆) | |
| 5 | 4 | rngogrpo 37904 | . . 3 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐽 ∈ GrpOp) |
| 7 | 1, 4 | rngogrphom 37965 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
| 8 | rnghom0.2 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 9 | rnghom0.4 | . . 3 ⊢ 𝑊 = (GId‘𝐽) | |
| 10 | 8, 9 | ghomidOLD 37883 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) → (𝐹‘𝑍) = 𝑊) |
| 11 | 3, 6, 7, 10 | syl3anc 1373 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑍) = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 GrpOpcgr 30418 GIdcgi 30419 GrpOpHom cghomOLD 37877 RingOpscrngo 37888 RingOpsHom crngohom 37954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-grpo 30422 df-gid 30423 df-ablo 30474 df-ghomOLD 37878 df-rngo 37889 df-rngohom 37957 |
| This theorem is referenced by: keridl 38026 |
| Copyright terms: Public domain | W3C validator |