Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohom0 Structured version   Visualization version   GIF version

Theorem rngohom0 37934
Description: A ring homomorphism preserves 0. (Contributed by Jeff Madsen, 2-Jan-2011.)
Hypotheses
Ref Expression
rnghom0.1 𝐺 = (1st𝑅)
rnghom0.2 𝑍 = (GId‘𝐺)
rnghom0.3 𝐽 = (1st𝑆)
rnghom0.4 𝑊 = (GId‘𝐽)
Assertion
Ref Expression
rngohom0 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹𝑍) = 𝑊)

Proof of Theorem rngohom0
StepHypRef Expression
1 rnghom0.1 . . . 4 𝐺 = (1st𝑅)
21rngogrpo 37872 . . 3 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
323ad2ant1 1133 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐺 ∈ GrpOp)
4 rnghom0.3 . . . 4 𝐽 = (1st𝑆)
54rngogrpo 37872 . . 3 (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp)
653ad2ant2 1134 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐽 ∈ GrpOp)
71, 4rngogrphom 37933 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))
8 rnghom0.2 . . 3 𝑍 = (GId‘𝐺)
9 rnghom0.4 . . 3 𝑊 = (GId‘𝐽)
108, 9ghomidOLD 37851 . 2 ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) → (𝐹𝑍) = 𝑊)
113, 6, 7, 10syl3anc 1371 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹𝑍) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cfv 6575  (class class class)co 7450  1st c1st 8030  GrpOpcgr 30523  GIdcgi 30524   GrpOpHom cghomOLD 37845  RingOpscrngo 37856   RingOpsHom crngohom 37922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-map 8888  df-grpo 30527  df-gid 30528  df-ablo 30579  df-ghomOLD 37846  df-rngo 37857  df-rngohom 37925
This theorem is referenced by:  keridl  37994
  Copyright terms: Public domain W3C validator