MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpgecl Structured version   Visualization version   GIF version

Theorem rpgecl 12981
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
rpgecl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)

Proof of Theorem rpgecl
StepHypRef Expression
1 simp2 1137 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2 0red 11177 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ ℝ)
3 rpre 12960 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
433ad2ant1 1133 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
5 rpgt0 12964 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
653ad2ant1 1133 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐴)
7 simp3 1138 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
82, 4, 1, 6, 7ltletrd 11334 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐵)
9 elrp 12953 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
101, 8, 9sylanbrc 583 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109   class class class wbr 5107  cr 11067  0cc0 11068   < clt 11208  cle 11209  +crp 12951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-rp 12952
This theorem is referenced by:  divge1  13021  rpgecld  13034  logge0  26514
  Copyright terms: Public domain W3C validator