MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpgecl Structured version   Visualization version   GIF version

Theorem rpgecl 13063
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
rpgecl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)

Proof of Theorem rpgecl
StepHypRef Expression
1 simp2 1138 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2 0red 11264 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ ℝ)
3 rpre 13043 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
433ad2ant1 1134 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
5 rpgt0 13047 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
653ad2ant1 1134 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐴)
7 simp3 1139 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
82, 4, 1, 6, 7ltletrd 11421 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐵)
9 elrp 13036 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
101, 8, 9sylanbrc 583 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108   class class class wbr 5143  cr 11154  0cc0 11155   < clt 11295  cle 11296  +crp 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-addrcl 11216  ax-rnegex 11226  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-rp 13035
This theorem is referenced by:  divge1  13103  rpgecld  13116  logge0  26647
  Copyright terms: Public domain W3C validator