| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgecld | Structured version Visualization version GIF version | ||
| Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| rpgecld.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| rpgecld | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 2 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | rpgecld.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
| 4 | rpgecl 12988 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ+) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 ≤ cle 11216 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-rp 12959 |
| This theorem is referenced by: rlimno1 15627 isumrpcl 15816 divlogrlim 26551 logno1 26552 chprpcl 27125 vmadivsumb 27401 vmalogdivsum2 27456 vmalogdivsum 27457 2vmadivsumlem 27458 selbergb 27467 selberg2b 27470 selberg3lem2 27476 selberg3 27477 selberg4lem1 27478 selberg4 27479 selberg3r 27487 selberg4r 27488 selberg34r 27489 pntrlog2bndlem1 27495 pntrlog2bndlem2 27496 pntrlog2bndlem3 27497 pntrlog2bndlem4 27498 pntrlog2bndlem5 27499 pntrlog2bndlem6a 27500 pntrlog2bndlem6 27501 pntrlog2bnd 27502 pntibndlem2 27509 pntlemb 27515 |
| Copyright terms: Public domain | W3C validator |