MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpgecld Structured version   Visualization version   GIF version

Theorem rpgecld 12155
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
rpgecld.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
rpgecld (𝜑𝐴 ∈ ℝ+)

Proof of Theorem rpgecld
StepHypRef Expression
1 rpgecld.2 . 2 (𝜑𝐵 ∈ ℝ+)
2 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
3 rpgecld.3 . 2 (𝜑𝐵𝐴)
4 rpgecl 12103 . 2 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ ∧ 𝐵𝐴) → 𝐴 ∈ ℝ+)
51, 2, 3, 4syl3anc 1491 1 (𝜑𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157   class class class wbr 4844  cr 10224  cle 10365  +crp 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-resscn 10282  ax-1cn 10283  ax-addrcl 10286  ax-rnegex 10296  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-rp 12074
This theorem is referenced by:  rlimno1  14724  isumrpcl  14912  divlogrlim  24721  logno1  24722  chprpcl  25283  vmadivsumb  25523  vmalogdivsum2  25578  vmalogdivsum  25579  2vmadivsumlem  25580  selbergb  25589  selberg2b  25592  selberg3lem2  25598  selberg3  25599  selberg4lem1  25600  selberg4  25601  selberg3r  25609  selberg4r  25610  selberg34r  25611  pntrlog2bndlem1  25617  pntrlog2bndlem2  25618  pntrlog2bndlem3  25619  pntrlog2bndlem4  25620  pntrlog2bndlem5  25621  pntrlog2bndlem6a  25622  pntrlog2bndlem6  25623  pntrlog2bnd  25624  pntibndlem2  25631  pntlemb  25637
  Copyright terms: Public domain W3C validator