Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpgecld | Structured version Visualization version GIF version |
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
rpgecld.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
rpgecld | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
2 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | rpgecld.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
4 | rpgecl 12740 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ+) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5078 ℝcr 10854 ≤ cle 10994 ℝ+crp 12712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-addrcl 10916 ax-rnegex 10926 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-rp 12713 |
This theorem is referenced by: rlimno1 15346 isumrpcl 15536 divlogrlim 25771 logno1 25772 chprpcl 26336 vmadivsumb 26612 vmalogdivsum2 26667 vmalogdivsum 26668 2vmadivsumlem 26669 selbergb 26678 selberg2b 26681 selberg3lem2 26687 selberg3 26688 selberg4lem1 26689 selberg4 26690 selberg3r 26698 selberg4r 26699 selberg34r 26700 pntrlog2bndlem1 26706 pntrlog2bndlem2 26707 pntrlog2bndlem3 26708 pntrlog2bndlem4 26709 pntrlog2bndlem5 26710 pntrlog2bndlem6a 26711 pntrlog2bndlem6 26712 pntrlog2bnd 26713 pntibndlem2 26720 pntlemb 26726 |
Copyright terms: Public domain | W3C validator |