Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpgecld | Structured version Visualization version GIF version |
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
rpgecld.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
rpgecld | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
2 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | rpgecld.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
4 | rpgecl 12804 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ+) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 class class class wbr 5081 ℝcr 10916 ≤ cle 11056 ℝ+crp 12776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-addrcl 10978 ax-rnegex 10988 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-rp 12777 |
This theorem is referenced by: rlimno1 15410 isumrpcl 15600 divlogrlim 25835 logno1 25836 chprpcl 26400 vmadivsumb 26676 vmalogdivsum2 26731 vmalogdivsum 26732 2vmadivsumlem 26733 selbergb 26742 selberg2b 26745 selberg3lem2 26751 selberg3 26752 selberg4lem1 26753 selberg4 26754 selberg3r 26762 selberg4r 26763 selberg34r 26764 pntrlog2bndlem1 26770 pntrlog2bndlem2 26771 pntrlog2bndlem3 26772 pntrlog2bndlem4 26773 pntrlog2bndlem5 26774 pntrlog2bndlem6a 26775 pntrlog2bndlem6 26776 pntrlog2bnd 26777 pntibndlem2 26784 pntlemb 26790 |
Copyright terms: Public domain | W3C validator |