MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpgecld Structured version   Visualization version   GIF version

Theorem rpgecld 13041
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
rpgecld.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
rpgecld (𝜑𝐴 ∈ ℝ+)

Proof of Theorem rpgecld
StepHypRef Expression
1 rpgecld.2 . 2 (𝜑𝐵 ∈ ℝ+)
2 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
3 rpgecld.3 . 2 (𝜑𝐵𝐴)
4 rpgecl 12988 . 2 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ ∧ 𝐵𝐴) → 𝐴 ∈ ℝ+)
51, 2, 3, 4syl3anc 1373 1 (𝜑𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110  cr 11074  cle 11216  +crp 12958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-addrcl 11136  ax-rnegex 11146  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-rp 12959
This theorem is referenced by:  rlimno1  15627  isumrpcl  15816  divlogrlim  26551  logno1  26552  chprpcl  27125  vmadivsumb  27401  vmalogdivsum2  27456  vmalogdivsum  27457  2vmadivsumlem  27458  selbergb  27467  selberg2b  27470  selberg3lem2  27476  selberg3  27477  selberg4lem1  27478  selberg4  27479  selberg3r  27487  selberg4r  27488  selberg34r  27489  pntrlog2bndlem1  27495  pntrlog2bndlem2  27496  pntrlog2bndlem3  27497  pntrlog2bndlem4  27498  pntrlog2bndlem5  27499  pntrlog2bndlem6a  27500  pntrlog2bndlem6  27501  pntrlog2bnd  27502  pntibndlem2  27509  pntlemb  27515
  Copyright terms: Public domain W3C validator