Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpgecld | Structured version Visualization version GIF version |
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
rpgecld.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
rpgecld | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
2 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | rpgecld.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
4 | rpgecl 12458 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ+) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5032 ℝcr 10574 ≤ cle 10714 ℝ+crp 12430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-addrcl 10636 ax-rnegex 10646 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-rp 12431 |
This theorem is referenced by: rlimno1 15058 isumrpcl 15246 divlogrlim 25325 logno1 25326 chprpcl 25890 vmadivsumb 26166 vmalogdivsum2 26221 vmalogdivsum 26222 2vmadivsumlem 26223 selbergb 26232 selberg2b 26235 selberg3lem2 26241 selberg3 26242 selberg4lem1 26243 selberg4 26244 selberg3r 26252 selberg4r 26253 selberg34r 26254 pntrlog2bndlem1 26260 pntrlog2bndlem2 26261 pntrlog2bndlem3 26262 pntrlog2bndlem4 26263 pntrlog2bndlem5 26264 pntrlog2bndlem6a 26265 pntrlog2bndlem6 26266 pntrlog2bnd 26267 pntibndlem2 26274 pntlemb 26280 |
Copyright terms: Public domain | W3C validator |