MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpgecld Structured version   Visualization version   GIF version

Theorem rpgecld 12857
Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
rpgecld.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
rpgecld (𝜑𝐴 ∈ ℝ+)

Proof of Theorem rpgecld
StepHypRef Expression
1 rpgecld.2 . 2 (𝜑𝐵 ∈ ℝ+)
2 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
3 rpgecld.3 . 2 (𝜑𝐵𝐴)
4 rpgecl 12804 . 2 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ ∧ 𝐵𝐴) → 𝐴 ∈ ℝ+)
51, 2, 3, 4syl3anc 1371 1 (𝜑𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104   class class class wbr 5081  cr 10916  cle 11056  +crp 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10974  ax-1cn 10975  ax-addrcl 10978  ax-rnegex 10988  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-rp 12777
This theorem is referenced by:  rlimno1  15410  isumrpcl  15600  divlogrlim  25835  logno1  25836  chprpcl  26400  vmadivsumb  26676  vmalogdivsum2  26731  vmalogdivsum  26732  2vmadivsumlem  26733  selbergb  26742  selberg2b  26745  selberg3lem2  26751  selberg3  26752  selberg4lem1  26753  selberg4  26754  selberg3r  26762  selberg4r  26763  selberg34r  26764  pntrlog2bndlem1  26770  pntrlog2bndlem2  26771  pntrlog2bndlem3  26772  pntrlog2bndlem4  26773  pntrlog2bndlem5  26774  pntrlog2bndlem6a  26775  pntrlog2bndlem6  26776  pntrlog2bnd  26777  pntibndlem2  26784  pntlemb  26790
  Copyright terms: Public domain W3C validator