| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgecld | Structured version Visualization version GIF version | ||
| Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| rpgecld.3 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| rpgecld | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 2 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | rpgecld.3 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
| 4 | rpgecl 12959 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ+) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 ℝcr 11045 ≤ cle 11187 ℝ+crp 12929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-addrcl 11107 ax-rnegex 11117 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-rp 12930 |
| This theorem is referenced by: rlimno1 15597 isumrpcl 15786 divlogrlim 26578 logno1 26579 chprpcl 27152 vmadivsumb 27428 vmalogdivsum2 27483 vmalogdivsum 27484 2vmadivsumlem 27485 selbergb 27494 selberg2b 27497 selberg3lem2 27503 selberg3 27504 selberg4lem1 27505 selberg4 27506 selberg3r 27514 selberg4r 27515 selberg34r 27516 pntrlog2bndlem1 27522 pntrlog2bndlem2 27523 pntrlog2bndlem3 27524 pntrlog2bndlem4 27525 pntrlog2bndlem5 27526 pntrlog2bndlem6a 27527 pntrlog2bndlem6 27528 pntrlog2bnd 27529 pntibndlem2 27536 pntlemb 27542 |
| Copyright terms: Public domain | W3C validator |